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ARTICLE INFO ABSTRACT

Keywords: Objective: To investigate the relationship between tumor metabolism and immune cell infiltration in Head and
Head and neck squamous cell carcinoma Neck Squamous Cell Carcinoma (HNSCC), aiming to identify novel biomarkers and potential therapeutic targets.
(HNSCC) Methods: Seven major metabolic pathways were analyzed using Gene Set Variation Analysis (GSVA) in HNSCC
TNFAIP6 . . . . . . . I

Metabolism cohorts to assess their correlation with overall survival (OS) and immune microenvironment characteristics.

Unsupervised clustering was applied to identify metabolic subtypes, and differentially expressed metabolism-
related genes (MRGs) were screened for prognostic relevance. A risk model was constructed based on 16 core
MRGs. TNFAIP6 was further evaluated for its functional role through in vitro assays, including proliferation,
migration, and invasion analyses.

Results: The activity of key metabolic pathways, such as glycolysis, oxidative phosphorylation, and fatty acid
metabolism, significantly correlated with OS and immune infiltration patterns. Two distinct metabolic clusters
(C1 and C2) were identified, with C1 associated with a more immune-enriched microenvironment. A total of 698
MRGs were linked to immune modulation and tumor progression. The risk model based on 16 MRGs effectively
stratified patients by prognosis and immune infiltration status. TNFAIP6 was highly expressed in malignant cells
and associated with immunosuppression, poor survival, and tumor progression. Functional experiments
confirmed that TNFAIP6 knockdown inhibited tumor cell proliferation, migration, and invasion.

Conclusion: Metabolic reprogramming plays a critical role in shaping the immune landscape of HNSCC. TNFAIP6
represents a promising prognostic biomarker and potential therapeutic target for improving personalized
treatment in HNSCC patients.

Tumor immune microenvironment

1. Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) is one of the
most prevalent malignant cancers in the world, with its development
strongly linked to risk factors like smoking, alcohol use, and HPV
infection.! Although advances in early diagnosis and treatment have
been made, the high recurrence rate and low survival rate continue to
pose major obstacles in clinical management.?

In recent years, tumor metabolism research has gradually become an
important field of tumor immunology.® Tumor cells are key players in
metabolic reprogramming, which not only promotes their proliferation,
survival, and migration, but also influences immune responses in the

tumor microenvironment.* Within the tumor immune microenviron-
ment (TIME), the functionality and infiltration patterns of immune cells
exert a profound influence on tumor immune evasion, therapeutic
responsiveness, and patient prognosis.5

Metabolic pathways are pivotal in modulating immune cell activity
and shaping the TIME, with specific pathways such as glycolysis,
oxidative phosphorylation, fatty acid metabolism, and amino acid
metabolism being closely intertwined with the immunosuppressive
tumor microenvironment.® Consequently, delving into the impact of
these metabolic pathways on the immune microenvironment could yield
novel biomarkers and therapeutic targets for the management of
HNSCC. However, few studies have conducted genomic analyses of
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HNSCC from a global perspective of metabolic heterogeneity. Most
previous research has been limited to specific metabolic pathways.”®

This study aims to deeply explore the interaction between the seven
metabolic pathways, rather than focusing solely on individual pathways
and the immune microenvironment in HNSCC based on bioinformatics
analysis. Through systematic analysis of tumor-related genes, we hope
to reveal the relationship between specific metabolic pathways and
immune cell infiltration, thereby providing new insights and directions
for tumor immunotherapy.

2. Methods and materials
2.1. Data acquisition

RNA sequencing (RNA-seq) data and corresponding clinical infor-
mation for 519 HNSCC samples were retrieved from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/). For external
validation, the GSE65858 dataset, comprising 270 HNSCC patients with
gene expression profiles and clinical data, was downloaded from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). All TCGA data were accessed and downloaded prior to the
implementation of access restrictions, ensuring that the analyses con-
ducted in this study are not impacted by current database limitations. All
GEO data used in this study are publicly available and were accessed in
accordance with data usage policies.

The gene sets representing seven major metabolic pathways were
previously identified by Peng et al.” These pathways encompass amino
acid metabolism, carbohydrate metabolism, energy metabolism inte-
gration, lipid metabolism, nucleotide metabolism, the tricarboxylic acid
(TCA) cycle, and vitamin & cofactor metabolism (Supplementary
Table S1).

2.2. Pathway enrichment analysis

Gene set variation analysis (GSVA) was conducted using the "GSVA"
R package to assess the activity of seven metabolic pathways in each
tumor sample. This method calculates enrichment scores for each
pathway based on the expression levels of relevant gene sets. The
enrichment scores for all samples are listed in Supplementary Table S2.

Kaplan-Meier survival analysis and log-rank tests were used to
evaluate the connection between the activity of these metabolic path-
ways and overall survival (OS) in HNSCC patients. The analysis was
conducted using Sangerbox 3.0 (http://sangerbox.com/home.html). To
determine the optimal cut-off point for categorizing pathway activity
levels, the "surv_cutpoint" function from the "survminer" R package was
utilized. This function identifies the cut-off value that maximizes the log-
rank statistic, ensuring an optimal separation of patients into high- and
low-activity groups for each pathway.

2.3. Identification of metabolic pathway-related clusters

After identifying key metabolic pathways associated with prognosis
in HNSCC, clustering analysis was conducted using the Consensu-
sClusterPlus tool'° to identify potential metabolic subtypes. The analysis
used PAM clustering with Pearson correlation distance (1-Pearson cor-
relation) and performed 10-fold resampling with 80% of the samples in
each iteration.

The optimal number of clusters (K) was determined using the
empirical cumulative distribution function (CDF) plot. As the number of
clusters (K) increases, the area under the CDF curve also increases. To
select the optimal K, we considered the following two factors: (1) the
area under the CDF curve, which should be maximized, and (2) the trend
in the CDF Delta plot, where the optimal K is selected when the Delta
decrease is slowest. After evaluating these factors, the final decision was
made. Additionally, consistency within clusters was considered, where
the cluster with the highest average within-cluster consistency was
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chosen as K = 2, and the second highest as K = 3. Based on these ana-
lyses, HNSCC samples were classified into two distinct metabolic
clusters.

2.4. Immune infiltration analysis

The ESTIMATE algorithm was used to assess the overall level of
immune infiltration in tumor tissues based on gene expression data, a
widely used method in previous studies.'™'? This algorithm provided
three key scores: InmuneScore, StromalScore, and ESTIMATEScore (the
latter being inversely correlated with tumor purity), which were
calculated for patients with HNSCC. In addition, immune cell infiltration
scores for 22 immune cell types were calculated using the CIBERSORT
tool (R package IOBR), providing a more detailed analysis of the im-
mune microenvironment in each sample.'

2.5. Identification of metabolism-related genes (MRGs) in HNSCC

Differentially expressed genes (DEGs) between different metabolic
pathway-related clusters were identified using the "limma" package in R,
with a threshold of P < 0.05 and log2|fold change| > 1.00. Genes
meeting these criteria were considered as MRGs.

Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis was conducted to explore the biological functions and
pathways associated with MRGs. The prognostic significance of MRGs in
HNSCC was evaluated using univariate Cox regression. After identifying
prognosis-related MRGs, potential gene clusters associated with MRGs
were determined through unsupervised clustering analysis.

2.6. Risk model construction

In this study, we narrowed down the MRGs associated with HNSCC
and identified key prognostic genes using univariate Cox regression and
Lasso regression analysis. The selected key prognostic genes were then
included in a stepwise multivariate regression model to construct the
risk model. The model with the highest C-index was chosen as the
optimal risk model. To evaluate the predictive accuracy of the risk score,
time-dependent ROC curves were generated using the time ROC R
package, which is commonly used to estimate ROC curves and the area
under the curve (AUC) when dealing with censored data.'* The inverse
probability weighting method was used to manage censored data during
the estimation process.

2.7. Cell culture and transfection

The human oral adenosquamous carcinoma cell line Cal-27 and the
human oral squamous cell carcinoma cell line HSC-6 were obtained from
the American Type Culture Collection (ATCC, USA). Cells were cultured
in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin-streptomycin, and main-
tained at 37 °C in a humidified incubator with 5% CO,.

Transient transfections were performed using Lipofectamine 2000
(Invitrogen, Carlsbad, USA) according to the manufacturer's protocol.
Small interfering RNAs (siRNAs) targeting TNFAIP6 were synthesized by
GenePharma (Suzhou, China) and transfected using the same reagent.
The sequences of the siRNAs are provided in Supplementary Table S11.

2.8. Cell proliferation assay

Transfected cells were cultured for 24 h, then seeded at a density of
2000 cells per well in a 96-well plate. After cell adhesion, they were
incubated for 1, 3, and 5 days. At each time point, 10 pL of MTT reagent
was added to each well, and cells were incubated for 4 h at 37 °C. The
reaction was stopped by adding 100 pL of 10% sodium dodecyl sulfate
(SDS) solution, and absorbance was measured at 570 nm using a
microplate reader. The experiment was repeated three times to ensure


https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://sangerbox.com/home.html

M. Lian et al
result accuracy and reproducibility.
2.9. Colony formation assay

CAL-27 and HSC-6 cells with TNFAIP6 knockdown were seeded at
500 cells per well in 12-well plates and cultured for 14 days to allow
colony formation. After incubation, the colonies were fixed with 4%
paraformaldehyde at room temperature for 30 min, then stained with
0.1% crystal violet for 30 min. Excess dye was removed by washing the
stained colonies with PBS, air-dried, and then counted manually under a
microscope.
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2.10. Cell invasion and migration assay

Cell invasion and migration abilities were assessed using the Trans-
well system and scratch assay respectively. For the invasion assay, cells
were resuspended in serum-free medium and placed into the upper
chamber of a Transwell system (8 pm pore size, Corning). The lower
chamber contained medium with 20% fetal bovine serum (FBS) as a
chemoattractant. After 24 h of incubation, non-invasive cells on the
upper surface of the membrane were removed using a cotton swab. The
invaded cells on the lower surface were then fixed, stained with crystal
violet, and counted under a microscope.

For the scratch assay, transfected cells were seeded into 12-well
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Fig. 1. Flowchart of the development of the risk model and identification of key factors in HNSCC.
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plates and allowed to adhere. Once adhered, a scratch was made across
the cell monolayer using a sterile pipette tip, and the cells were incu-
bated for 24 h in serum-free medium. Migration was observed and
quantified by imaging the wound area at 0 and 24 h.

2.11. RNA extraction and RT-gPCR

Total RNA was isolated from cultured cells using TRIzol reagent
(Invitrogen, #15596018) (1 mL per well), following the manufacturer's
instructions. The extraction process involved the addition of chloroform,
isopropanol, and 75% ethanol for RNA purification. After extracting
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RNA, its concentration was measured using a NanoDrop spectropho-
tometer. For cDNA synthesis, 1 pg of total RNA was reverse-transcribed
using a reverse transcription kit (Takara, #RR047A) according to the
manufacturer's instructions. Quantitative PCR (RT-qPCR) was then
performed with specific primers listed in Supplementary Table S11. The
RT-qPCR was carried out in a 10 pL reaction volume, and gene expres-
sion was normalized to the housekeeping gene actin.

2.12. Statistical analysis

Differences between two groups were analyzed using either an
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Fig. 2. Prognostic relevance of metabolic pathway activity and its association with the tumor microenvironment in HNSCC. A—G. KM survival curves for overall
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unpaired Student's t-test or the Wilcoxon rank sum test, based on the
data distribution. For comparisons involving more than two groups, one-
way ANOVA or the Kruskal-Wallis test was applied, as appropriate.
Spearman's correlation analysis was used to assess the relationship be-
tween two variables. A two-sided P-value of <0.05 was considered sta-
tistically significant, unless stated otherwise. All statistical analyses
were conducted using R software (Version 4.4.2).
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3. Results
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3.1. Identification of key metabolic pathways in HNSCC

The flowchart was shown in Fig. 1. To explore the role of metabolic

pathways in HNSCC, we conducted Gene Set Variation Analysis (GSVA)
on RNA-seq data to measure the activity of seven key metabolic

Metabolism-cluster
oc
L J&]

Fig. 3. Identification of metabolic pathway-related
clusters and their association with TIME in HNSCC.
A. Cumulative distribution function (CDF) curve for
consensus clustering. B. Heatmap of consensus clus-
tering, categorizing HNSCC samples into two
metabolism-related clusters (C1 and C2). C. Heatmap
depicting the activity of six metabolic pathways
across the two clusters. D. Boxplots displaying the
GSVA scores of the six key metabolic pathways be-
tween clusters. E. Boxplots comparing immune infil-
tration scores and tumor purity between the two
clusters. F. Boxplots comparing the expression levels
of immune checkpoints between C1 and C2. G. Box-
plots illustrating differences in the infiltration of
various immune cell types between the two clusters.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001,
compared to Cluster C1.
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pathways in tumor samples (Supplementary Table S2). Using the GSVA
scores, samples were divided into high-activity and low-activity groups
for each pathway, based on optimal cut-off values determined through
survival analysis.

Kaplan-Meier survival curves showed a significant correlation be-
tween the metabolic activity of the seven pathways and overall survival
(0OS) in HNSCC patients (Fig. 2A-G). Specifically, pathways such as
amino acid metabolism, carbohydrate metabolism, lipid metabolism,
nucleotide metabolism, the tricarboxylic acid (TCA) cycle, and vitamin
and cofactor metabolism showed that patients with higher pathway
activity exhibited significantly improved OS compared to those with
lower activity (log-rank test, P < 0.05).

Interestingly, energy metabolism was the only pathway where GSVA
scores failed to demonstrate a significant correlation with OS, suggesting
that its activity may not be a critical determinant of survival outcomes in
HNSCC. These findings highlight the heterogeneity in the prognostic
relevance of metabolic pathways and underscore the potential impor-
tance of specific metabolic activities in influencing tumor progression
and patient outcomes.

The relationship between these six key metabolic pathways and the
overall level of immune infiltration in HNSCC was initially examined.

Further analysis uncovered distinct relationships between the ac-
tivity of these metabolic pathways and the tumor microenvironment. A
robust positive correlation prevails among the immune infiltration
levels (Supplementary Table S3). Specifically, among the six pathways
significantly associated with overall survival, only amino acid meta-
bolism, nucleotide metabolism, and the TCA cycle exhibited a negative
correlation with immune infiltration levels (Fig. 2H). Conversely, the
activity of these three pathways was positively correlated with tumor
purity, suggesting a potential role in shaping an immunosuppressive
tumor microenvironment. These findings imply that heightened activity
in these pathways may contribute to reduced immune cell infiltration,
while promoting a tumor-dominated microenvironment.

3.2. Identification of metabolic pathway-related clusters and their
association with TIME in HNSCC

To further investigate the relationship between metabolic activity
and TIME in HNSCC, unsupervised consensus clustering was performed
based on the GSVA scores of six key metabolic pathways significantly
associated with OS. The optimal number of clusters was determined to
be two (k = 2) using the cumulative distribution function (CDF) and
consensus matrix stability analysis (Fig. 3A and B).

These two clusters, designated as Cl and C2 (Supplementary
Table S4), exhibited distinct metabolic activity profiles (Fig. 3C). Cluster
C1 was characterized by significantly higher activity of amino acid
metabolism, nucleotide metabolism, and the TCA cycle compared to
Cluster C2, while Cluster C2 exhibited higher activity in carbohydrate,
lipid, and vitamin & cofactor metabolism (Fig. 3D).

We also investigated the connection between metabolic clusters and
the TIME in HNSCC. Cluster C2 displayed features indicative of a more
immune-enriched TIME, including higher ImmuneScore and Stromal-
Score, alongside lower tumor purity (Fig. 3E), suggesting higher
immunosuppression in C1.

Furthermore, Cluster C2 demonstrated elevated expression of key
immune checkpoint molecules such as CD274 (PD-L1) and HAVCR2,
suggesting a more immune-active phenotype compared to Cluster C1
(Fig. 3F).

Analysis of immune cell infiltration (Supplementary Table S5)
revealed that Cluster C2 is characterized by a relatively less active im-
mune response, with high levels of naive B cells, resting memory T cells,
and MO macrophages (Fig. 3G). This suggests an immune environment
where immune cells are either in a resting or naive state, possibly
indicating immune tolerance or an inability to effectively respond to the
tumor. Cluster C1, on the other hand, exhibits higher levels of memory B
cells, CD8" T cells, activated CD4" T cells, follicular helper T cells,
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regulatory T cells, NK cells, and monocytes, suggesting a more active
immune response. However, the presence of regulatory T cells (Tregs)
and monocytes indicates that the immune response might be suppressed
or compromised, potentially favoring tumor survival (Fig. 3G).
Together, these findings reveal that tumors in Cluster C1 may be un-
dergoing a more active immune response, but with immune evasion
mechanisms in place (e.g., Tregs), while tumors in Cluster C2 may be in
a more immune-suppressive or immune-tolerant state, with a less
effective immune response overall.

Moreover, the results highlight that distinct metabolic profiles are
closely associated with immune activity and tumor purity, offering
valuable insights into the interplay between metabolism and TIME in
HNSCC.

3.3. Identification of metabolism-related gene clusters and their
association with TIME in HNSCC

To further explore the functional implications of metabolism in
HNSCC, differentially expressed genes (DEGs) between the initial
metabolic clusters (C1 and C2) were identified using the R package
"limma" (Supplementary Table S6). A total of 698 DEGs were classified
as metabolism-related genes (Fig. 4A). Functional enrichment analysis
of the MRGs identified pathways such as PI3K-Akt signaling, focal
adhesion, and ECM-receptor interaction as significantly enriched, sug-
gesting their potential roles in tumor progression and immune regu-
lation'®'” (Fig. 4B).

Prognostic analysis using univariate Cox regression was performed
on these MRGs, identifying 142 representative prognosis-related MRGs
(Supplementary Table S7). Based on the expression profiles of these 142
MRGs, HNSCC patients were classified into two distinct subgroups,
designated as MRG-related clusters MCl1 and MC2 (Fig. 4C)
(Supplementary Table S8).

However, there was no significant difference in metabolic pathways
between the MC1 and MC2 groups (Fig. 4D). Notably, Kaplan-Meier
survival analysis demonstrated that MC2 had significantly longer OS
compared to MC1 (p < 0.0001) (Fig. 4E).

Immune microenvironment analysis showed that Cluster MC2 is
characterized by higher levels of naive B cells, plasma cells, and T cells
(Fig. 4F), which suggests an immune environment with a mixed immune
response, potentially with some activation of humoral and cellular im-
munity. However, the presence of naive immune cells may also imply a
less effective or incomplete immune response, possibly due to immune
tolerance or insufficient antigen presentation. Cluster MC1, on the other
hand, shows higher levels of MO and M2 macrophages, which suggests a
more immune-suppressive tumor microenvironment. The high levels of
M2 macrophages in particular indicate that the tumor may be using
immune-suppressive mechanisms to promote growth and evade immune
surveillance. From these results, it is clear that tumors in Cluster MC2
may be characterized by an ongoing but potentially ineffective immune
response, while tumors in Cluster MC1 may have a more suppressive
immune environment, favoring tumor progression and immune evasion.

Moreover, MC2 demonstrated significantly elevated expression of
immune checkpoint molecules, including CTLA4, VSIR, and LAG3,
which supports a more immune-active phenotype (Fig. 4G).

These analyses support the notion that the classification of HNSCC
patients based on prognosis-related MRGs provides valuable insights
into the metabolic and immune heterogeneity of the tumor microenvi-
ronment, with implications for prognosis and therapeutic strategies.

Interestingly, no significant metabolic differences were observed
between the MC1 and MC2 groups. However, there were notable dif-
ferences in the TIME and overall survival, suggesting that the mecha-
nisms underlying metabolism-related genes and immune regulation are
more complex than a simple linear relationship. While metabolic
pathway alterations appeared limited, it is possible that the immune
microenvironment is influenced by the cumulative effect of subtle
metabolic changes, which may not be readily captured by bulk-level
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Fig. 4. Identification of metabolism-related gene
clusters and their association with TIME in HNSCC. A.
Volcano plot showing the differentially expressed
genes (DEGs) between the metabolic clusters C1 and
C2. B. Bubble plot showing enriched pathways from
KEGG analysis of the MRGs. C. Heatmap of unsuper-
vised clustering based on MRGs, dividing the samples
into two MRG-related clusters (MC1 and MC2). D.
Boxplots comparing the GSVA scores of the six key
- metabolic pathways between MC1 and MC2. E.

Kaplan-Meier survival curve demonstrating OS dif-

ferences between MC1 and MC2. F. Boxplots illus-

W eees:
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- ;l——" between MC1 and MC2. G. Boxplots showing the
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1 *#%%P < 0.0001, compared to MCL.
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pathway analysis. Furthermore, non-metabolic factors such as epige-
netic modifications, stromal composition, or cytokine-mediated
signaling may also contribute to shaping the immune landscape. These
findings highlight the intricate and multifactorial nature of tumor im-
mune regulation and underscore the need for integrated multi-omic
approaches to fully elucidate these interactions.

3.4. Construction of a metabolism-related risk model and its association
with the TIME

From the 142 prognosis-related MRGs identified in the previous
section, LASSO regression analysis was performed to select 32 key
prognosis-related MRGs (Supplementary Table S9). Next, stepwise
multivariate Cox regression analysis was performed to develop an
optimal risk model, which incorporated 16 core MRGs as the predictive
signature. Risk scores for each sample were calculated based on the
expression levels of these 16 genes (Supplementary Table S10). ROC
curve analysis validated the reliability of the risk model, with an AUC
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value above 0.7 for predicting 1-year, 3-year, and 5-year OS (Fig. 5A).

Patients were divided into high-risk and low-risk groups based on the
optimal cutoff value of the calculated risk score. Survival analysis
demonstrated that patients in the high-risk group had significantly
worse OS compared to the low-risk group (P < 0.0001, HR = 0.35 [95%
CI: 0.28-0.50]) (Fig. 5B).

Functional analysis revealed significant enrichment of the 16 core
MRGs in pathways associated with tumor metabolism and immune
regulation. Notably, patients in the high-risk group exhibited lower
infiltration of immune cells, such as B cells and CD8" T cells, compared
to the low-risk group (Fig. 5C). This suggests a more immunosuppressive
microenvironment in high-risk patients, which may contribute to their
poorer prognosis.

The sankey plot (Fig. 5D) illustrates the progression from metabolic
clusters (C1 and C2) to MRG-related clusters (MC1 and MC2). The ma-
jority of high-risk samples are derived from MC1, while most of the MC2
samples are classified into the low-risk group.

The results display two different visualizations of the key MRGs
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Fig. 5. Construction of a metabolism-related risk
model and its association with the TIME. A. ROC
curves for predicting 1-year, 3-year, and 5-year OS. B.
KM survival curves comparing OS between high-risk
and low-risk groups. C. Comparisons of immune cell
infiltration levels between high-risk and low-risk
groups. *P < 0.05, **P < 0.01, ***P < 0.001,
**¥%p < 0.0001, compared to the low-risk group. D.

Sankey diagram illustrating the cross-correlation be-

tween metabolism pathways, MRGs, and risk scores.
E. Multivariate Cox regression analysis of the 16 core

Risk level
@ xigh
O row

MRGs in the risk model. F. Heatmap showing the
relationship between the expression levels of 16 core
MRGs and survival prognosis.
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identified in the multi-factorial Cox regression analysis and their asso-
ciation with survival prognosis. In Fig. 5E, a forest plot illustrates the
hazard ratios (HRs) of the 16 core MRGs identified from the Cox
regression model. The HR values for each gene are shown along with
their corresponding 95% confidence intervals (CIs). This plot highlights
that genes such as ADCY2 and TNFAIP6 are associated with an increased
risk of poor survival prognosis (Fig. 5E).

The heatmap illustrates the expression levels of the identified MRGs
across different samples. The heatmap highlights the differential
expression of these genes in relation to survival prognosis, providing a
visual representation of how gene expression correlates with survival
outcomes. The survival prognosis-expressions are generally consistent
with the HRs shown in the forest plot (Fig. 5F).

To further validate the prognostic value and immunological rele-
vance of the metabolism-related risk model, we conducted an external
validation using the GSE65858 dataset. Consistent with the training
cohort, KM survival analysis showed that patients in the high-risk group
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had significantly worse OS compared to those in the low-risk group
(Fig. 6A, Supplementary Table S10). The time-dependent ROC curves
demonstrated good predictive accuracy of the risk model for 1-, 3-, and
5-year survival, with AUCs of 0.69, 0.72, and 0.71, respectively
(Fig. 6B). In addition, compared to the low-risk group, analysis of the
tumor immune microenvironment revealed that patients in the high-risk
group exhibited significantly higher stromal and immune scores, and
lower tumor purity (Fig. 6C), further supporting the model's association
with a distinct immune landscape.

In conclusion, this metabolism-related risk model provides a robust
tool for predicting prognosis and reflects the immune microenviron-
ment's heterogeneity in HNSCC patients, offering potential implications
for personalized therapy.
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Fig. 6. External validation of the metabolism-related risk model in the GSE65858 cohort. A. KM survival analysis showing that patients in the high-risk group had
significantly worse overall survival compared to those in the low-risk group. B. ROC curves of the risk model predicting 1-, 3-, and 5-year overall survival, with AUCs
of 0.69, 0.72, and 0.71, respectively. C. Comparison of Stromalscore, Inmunescore, and Tumor purity between high- and low-risk groups based on the ESTIMATE
algorithm. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, compared to the low-risk group.

3.5. TNFAIP6 is overexpressed in cancer cells and strongly linked to TIME
of HNSCC

In our study, we aimed to focus on genes positively associated with
risk (HR >1) for further functional validation, as these genes are more
likely to contribute to tumor progression and may serve as potential
therapeutic targets. Although GRIA3 showed the most significant P-
value (P = 2.1e-4) and a relatively narrow confidence interval (HR =
0.83), it exhibited a HR less than 1, indicating a potential protective role
rather than a risk-associated effect (Fig. 5 E). Therefore, GRIA3 was not
selected for further investigation.

Among the genes with HR > 1, the top three—AC011351.1,
PPIAP93, and PCDHGC3—either belong to pseudogenes or lack suffi-
cient functional annotation and experimental validation in cancer-
related studies. These limitations make them less suitable for down-
stream mechanistic exploration.

We therefore selected TNFAIP6, which ranked fourth among the risk-
associated genes (HR = 1.21, P = 0.01). TNFAIP6 is a well-annotated
protein-coding gene with documented roles in inflammation and can-
cer. Its biological relevance and availability of validated experimental
tools made it a feasible and meaningful candidate for further functional
studies in the context of tumor progression and immune regulation.

We first investigated TNFAIP6 expression across pan-cancer datasets
and found that TNFAIP6 is significantly overexpressed in most tumor
tissues compared to normal ones (Fig. 7A). TNFAIP6, also known as
TNF-a-induced protein 6, is involved in various cellular processes,
including inflammation and tissue remodeling.'® Recent studies have
highlighted its possible involvement in tumor growth and immune
regulation.'® Elevated TNFAIP6 expression has been linked to tumor
development, immune escape, and poor prognosis in several cancer
types, suggesting its importance in cancer biology and as a potential
treatment target.?%?!
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To further validate the risk model, TNFAIP6 was selected for analysis
as it showed a significant HR in the risk model, excluding pseudogenes.
Using the optimal cutoff value for TNFAIP6 expression, patients were
categorized into high- and low-expression groups. Kaplan-Meier sur-
vival analysis showed that high TNFAIP6 expression was linked to
significantly poorer OS (Fig. 7B). TNFAIP6 expression was significantly
higher in metabolic cluster C2 and MRG-related cluster MC1 compared
to C1 and MC2, respectively (P < 0.0001), indicating its strong associ-
ation with these high-risk patient subgroups (Fig. 7C).

TNFAIP6 expression showed positive correlations with several im-
mune checkpoint-related genes, including PD-L1, HAVCR2, and CTLA4
(Fig. 7D). Patients with high TNFAIP6 expression exhibited significantly
higher levels of these checkpoint genes (P < 0.05). Infiltration analysis
demonstrated notable differences between the high and low TNFAIP6
expression groups. High levels of TNFAIP6 are associated with lower
infiltration of CD4" and CD8™ T cells, and higher levels of MO and M2
macrophages (Fig. 7E). This suggests that TNFAIP6 may be involved in
immune evasion by inhibiting T cell activity and promoting M2
macrophage polarization. Combined with the data from Fig. 7D, which
shows a positive correlation between TNFAIP6 and PD-L1 expression,
we hypothesize that TNFAIP6 may influence T cell activity through the
regulation of PD-L1 (P < 0.05).

Compared to the low-expression group, the high TNFAIP6 expression
group had significantly higher immune scores, stromal scores, and
tumor purity (P < 0.0001), reflecting its association with immune
microenvironment modulation.

To externally validate the association between TNFAIP6 expression,
patient prognosis, and immune characteristics, we analyzed the
GSE65858 dataset. Consistent with the TCGA results, KM survival
analysis in the GSE65858 cohort revealed that patients with high
TNFAIP6 expression had significantly worse OS (Fig. 8A). Moreover,
high TNFAIP6 expression was associated with significantly elevated
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Fig. 7. Validation of TNFAIP6 expression and its as-
sociation with TIME. A. Violin plot demonstrates the
significantly higher expression levels of TNFAIP6 in
Grow most tumor samples compared to normal tissues, **P
< 0.01, ***P < 0.001, ****P < 0.0001. B. KM curve
showing high TNFAIP6 expression is associated with
significantly poorer OS. C. Boxplot showing TNFAIP6
expression in metabolic clusters. ****P < 0.0001,
compared to C1 or MC2. D. Boxplots of TNFAIP6
expression and immune checkpoint-related genes. E.
Boxplots of immune cell infiltration showing signifi-
cant differences between high and low TNFAIP6
expression groups. F. Boxplots of immune scores,
B F stromal scores, and tumor purity. *P < 0.05, **P <
e Frinty 0.01, ***P < 0.001, ****P < 0.0001, compared to the
" 3000 low TNFAIP6 expression group.
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stromal scores, immune scores, and decreased tumor purity (Fig. 8B), dendritic cells (Fig. 8C).
further highlighting its link to TIME. Immune infiltration analysis using These findings reinforce the role of TNFAIP6 and highlight its po-
the TIMER algorithm demonstrated that patients in the high-expression tential as a prognostic biomarker and immunomodulatory target in

group exhibited increased infiltration of neutrophils, macrophages, and HNSCC.
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3.6. TNFAIP6 is a potential prognostic marker and associated with tumor
progression

To further validate the role of TNFAIP6 in HNSCC, we performed a
series of in vitro experiments following TNFAIP6 knockdown in HSC-6
and CAL-27. These experiments included cell proliferation, colony for-
mation, migration, and invasion assays to assess the impact of TNFAIP6
depletion on tumor cell behavior.

Preliminary results indicate that knockdown of TNFAIP6 led to a
significant reduction in cell proliferation, colony formation, migration,
and invasion (Fig. 9A-E), consistent with our hypothesis that TNFAIP6
plays a role in promoting tumor growth and metastasis. These findings
support the idea that TNFAIP6 may contribute to the aggressiveness of
HNSCC and its potential as a therapeutic target.

This study preliminarily suggests that TNFAIP6 may play a role in
promoting tumor cell migration in HNSCC. In recent years, increasing
evidence has highlighted the involvement of TNFAIP6 in the
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**%%P < 0.0001, compared to the low TNFAIP6 expression group.

proliferation and metastasis of various cancers. For instance, TNFAIP6 is
significantly upregulated in gastric cancer tissues and is associated with
deeper tumor invasion, lymph node metastasis, and higher TNM stages.
Knockdown of TNFAIP6 was shown to inhibit cell proliferation and
migration, indicating its oncogenic potential.?? In hepatocellular carci-
noma, TNFAIP6 has been reported to promote tumor progression by
enhancing glycolysis through the c-Myc/PKM2 axis.>> Furthermore,
studies in urothelial carcinoma revealed that high TNFAIP6 expression
is strongly correlated with poor prognosis and serves as an independent
predictor of disease-specific and metastasis-free survival.>*

Although the role of TNFAIP6 in promoting tumor development has
been validated in several types of solid tumors, its molecular function
and regulatory mechanisms in HNSCC remain largely unexplored.
Future investigations may focus on whether TNFAIP6 exerts its effects
through classical oncogenic pathways such as Wnt/f-catenin or others.
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Fig. 9. Functional validation of TNFAIP6 knockdown
in HNSCC cells. A. qPCR analysis showing the effi-
cient knockdown of TNFAIP6 expression in HNSC
cells. B. MTT assay demonstrating the effect of
TNFAIP6 knockdown on HNSC cell proliferation. C.
Colony formation assay showing the impact of
TNFAIP6 knockdown on HNSC cell clonogenicity. D.
Invasion assay showing the reduced invasive ability
of TNFAIP6 knockdown HNSC cells. E. Scratch
wound healing assay showing that TNFAIP6 knock-
down suppressed the migration of HNSC cells. Si-NC:
normal cell group; si-TNFAIP6: TNFAIP6 knockdown
cell group. *P < 0.05, **P < 0.01, ***P < 0.001,
*#4xP < 0.0001, compared to the si-NC group.
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4. Discussion

The integration of metabolic and immune profiles provides a more
nuanced understanding of HNSCC biology and identifies TNFAIP6 as a
promising target for immunotherapy. Its role in immune checkpoint
regulation makes it a potential candidate for combination therapy with
checkpoint inhibitors, offering a new avenue for improving therapeutic
outcomes in HNSCC patients. Furthermore, the risk model derived from
this study could be used to stratify patients for personalized treatment
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si-TNFAIP6

OH

24H

strategies, enhancing the precision of therapeutic interventions.
Several studies have reported that the expression level of TNFAIP6 is
associated with the prognosis of HNSCC patients.> However, there is
limited research on the relationship between TNFAIP6 and the immune
microenvironment or tumor metabolism in HNSCC.%° Our study expands
on these findings by providing new insights into this relationship, sug-
gesting that TNFAIP6 may not only affect tumor progression through its
direct role in immune modulation but also influence tumor metabolism,
thereby contributing to a more aggressive tumor phenotype. This dual
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role opens up opportunities for targeting TNFAIP6 in a more holistic
therapeutic approach that addresses both immune evasion and meta-
bolic reprogramming in tumors.

Our findings are in line with previous research on the immune-
modulating effects of TNFAIP6, which has been implicated in various
cancers. For instance, similar to our observations in HNSCC, TNFAIP6
has been shown to regulate immune checkpoints, such as PD-1/PD-L1, in
other malignancies, including breast cancer and melanoma,?”?
including head and neck cancer.?** This supports the hypothesis that
TNFAIP6 could serve as a universal immune-modulating target across
different tumor types, further establishing its importance in cancer
immunotherapy. However, our study differs from earlier studies by
revealing the specific role of TNFAIP6 in modulating the immune
microenvironment in HNSCC, with a particular focus on macrophage
polarization and T cell exclusion, which has not been as extensively
explored in other cancers.

Although the precise mechanisms by which TNFAIP6 contributes to
immune regulation remain to be fully elucidated, our data suggest that
TNFAIP6 may facilitate tumor immune evasion through multiple path-
ways. The positive correlation between TNFAIP6 expression and key
immune checkpoint molecules such as PD-L1, CTLA4, and HAVCR2
implies that TNFAIP6 may be involved in the upregulation of inhibitory
immune signals, thereby dampening T cell-mediated anti-tumor im-
munity. In addition, tumors with high TNFAIP6 expression were char-
acterized by reduced CD4" and CD8" T cell infiltration and increased
MO and M2 macrophage presence, indicating a shift toward an immu-
nosuppressive microenvironment. Given the known role of M2 macro-
phages in promoting tumor progression and suppressing adaptive
immune responses, it is plausible that TNFAIP6 promotes macrophage
polarization and T cell exclusion. Previous studies have demonstrated
that TNFAIP6 interacts with hyaluronan and contributes to extracellular
matrix remodeling,>"*? which may influence immune cell trafficking
and activation. Taken together, these findings support the hypothesis
that TNFAIP6 may act as an immunoregulatory molecule in the tumor
microenvironment, potentially through modulating PD-L1 expression
and macrophage phenotype, warranting further mechanistic
investigation.

While this study provides some insights, there are some limitations.
First, the findings are based on bioinformatics and preliminary in vitro
experiments, necessitating further validation in preclinical and clinical
settings. Second, the underlying mechanisms of TNFAIP6 in regulating
immune checkpoints and its interaction with metabolic pathways war-
rant deeper investigation. Future studies should focus on elucidating
these mechanisms and evaluating the synergistic effects of targeting
TNFAIP6 with existing immunotherapies in HNSCC. Additionally,
exploring the potential of combining TNFAIP6 inhibition with metabolic
modulators could provide new therapeutic strategies that simulta-
neously disrupt tumor metabolism and enhance immune responses.

Finally, clinical trials are necessary to assess the potential of tar-
geting TNFAIP6 alongside other treatments, like immune checkpoint
inhibitors or metabolic drugs. Long-term studies on the link between
TNFAIP6 expression and how patients respond to immunotherapy could
offer useful information on its role as a biomarker and treatment target.

5. Conclusion

In conclusion, our study highlights the important role of metabolic
pathways in influencing the immune environment of HNSCC and iden-
tifies TNFAIP6 as a key factor. By connecting metabolic reprogramming
and immune regulation, TNFAIP6 serves as a novel prognostic marker
and a potential target for immunotherapy, paving the way for more
effective and personalized treatment strategies in HNSCC.
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