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A B S T R A C T

Objective: To investigate the relationship between tumor metabolism and immune cell infiltration in Head and 
Neck Squamous Cell Carcinoma (HNSCC), aiming to identify novel biomarkers and potential therapeutic targets.
Methods: Seven major metabolic pathways were analyzed using Gene Set Variation Analysis (GSVA) in HNSCC 
cohorts to assess their correlation with overall survival (OS) and immune microenvironment characteristics. 
Unsupervised clustering was applied to identify metabolic subtypes, and differentially expressed metabolism- 
related genes (MRGs) were screened for prognostic relevance. A risk model was constructed based on 16 core 
MRGs. TNFAIP6 was further evaluated for its functional role through in vitro assays, including proliferation, 
migration, and invasion analyses.
Results: The activity of key metabolic pathways, such as glycolysis, oxidative phosphorylation, and fatty acid 
metabolism, significantly correlated with OS and immune infiltration patterns. Two distinct metabolic clusters 
(C1 and C2) were identified, with C1 associated with a more immune-enriched microenvironment. A total of 698 
MRGs were linked to immune modulation and tumor progression. The risk model based on 16 MRGs effectively 
stratified patients by prognosis and immune infiltration status. TNFAIP6 was highly expressed in malignant cells 
and associated with immunosuppression, poor survival, and tumor progression. Functional experiments 
confirmed that TNFAIP6 knockdown inhibited tumor cell proliferation, migration, and invasion.
Conclusion: Metabolic reprogramming plays a critical role in shaping the immune landscape of HNSCC. TNFAIP6 
represents a promising prognostic biomarker and potential therapeutic target for improving personalized 
treatment in HNSCC patients.

1. Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) is one of the 
most prevalent malignant cancers in the world, with its development 
strongly linked to risk factors like smoking, alcohol use, and HPV 
infection.1 Although advances in early diagnosis and treatment have 
been made, the high recurrence rate and low survival rate continue to 
pose major obstacles in clinical management.2

In recent years, tumor metabolism research has gradually become an 
important field of tumor immunology.3 Tumor cells are key players in 
metabolic reprogramming, which not only promotes their proliferation, 
survival, and migration, but also influences immune responses in the 

tumor microenvironment.4 Within the tumor immune microenviron
ment (TIME), the functionality and infiltration patterns of immune cells 
exert a profound influence on tumor immune evasion, therapeutic 
responsiveness, and patient prognosis.5

Metabolic pathways are pivotal in modulating immune cell activity 
and shaping the TIME, with specific pathways such as glycolysis, 
oxidative phosphorylation, fatty acid metabolism, and amino acid 
metabolism being closely intertwined with the immunosuppressive 
tumor microenvironment.6 Consequently, delving into the impact of 
these metabolic pathways on the immune microenvironment could yield 
novel biomarkers and therapeutic targets for the management of 
HNSCC. However, few studies have conducted genomic analyses of 
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HNSCC from a global perspective of metabolic heterogeneity. Most 
previous research has been limited to specific metabolic pathways.7,8

This study aims to deeply explore the interaction between the seven 
metabolic pathways, rather than focusing solely on individual pathways 
and the immune microenvironment in HNSCC based on bioinformatics 
analysis. Through systematic analysis of tumor-related genes, we hope 
to reveal the relationship between specific metabolic pathways and 
immune cell infiltration, thereby providing new insights and directions 
for tumor immunotherapy.

2. Methods and materials

2.1. Data acquisition

RNA sequencing (RNA-seq) data and corresponding clinical infor
mation for 519 HNSCC samples were retrieved from The Cancer Genome 
Atlas (TCGA) database (https://portal.gdc.cancer.gov/). For external 
validation, the GSE65858 dataset, comprising 270 HNSCC patients with 
gene expression profiles and clinical data, was downloaded from the 
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih. 
gov/geo/). All TCGA data were accessed and downloaded prior to the 
implementation of access restrictions, ensuring that the analyses con
ducted in this study are not impacted by current database limitations. All 
GEO data used in this study are publicly available and were accessed in 
accordance with data usage policies.

The gene sets representing seven major metabolic pathways were 
previously identified by Peng et al.9 These pathways encompass amino 
acid metabolism, carbohydrate metabolism, energy metabolism inte
gration, lipid metabolism, nucleotide metabolism, the tricarboxylic acid 
(TCA) cycle, and vitamin & cofactor metabolism (Supplementary 
Table S1).

2.2. Pathway enrichment analysis

Gene set variation analysis (GSVA) was conducted using the "GSVA" 
R package to assess the activity of seven metabolic pathways in each 
tumor sample. This method calculates enrichment scores for each 
pathway based on the expression levels of relevant gene sets. The 
enrichment scores for all samples are listed in Supplementary Table S2.

Kaplan-Meier survival analysis and log-rank tests were used to 
evaluate the connection between the activity of these metabolic path
ways and overall survival (OS) in HNSCC patients. The analysis was 
conducted using Sangerbox 3.0 (http://sangerbox.com/home.html). To 
determine the optimal cut-off point for categorizing pathway activity 
levels, the "surv_cutpoint" function from the "survminer" R package was 
utilized. This function identifies the cut-off value that maximizes the log- 
rank statistic, ensuring an optimal separation of patients into high- and 
low-activity groups for each pathway.

2.3. Identification of metabolic pathway-related clusters

After identifying key metabolic pathways associated with prognosis 
in HNSCC, clustering analysis was conducted using the Consensu
sClusterPlus tool10 to identify potential metabolic subtypes. The analysis 
used PAM clustering with Pearson correlation distance (1-Pearson cor
relation) and performed 10-fold resampling with 80% of the samples in 
each iteration.

The optimal number of clusters (K) was determined using the 
empirical cumulative distribution function (CDF) plot. As the number of 
clusters (K) increases, the area under the CDF curve also increases. To 
select the optimal K, we considered the following two factors: (1) the 
area under the CDF curve, which should be maximized, and (2) the trend 
in the CDF Delta plot, where the optimal K is selected when the Delta 
decrease is slowest. After evaluating these factors, the final decision was 
made. Additionally, consistency within clusters was considered, where 
the cluster with the highest average within-cluster consistency was 

chosen as K = 2, and the second highest as K = 3. Based on these ana
lyses, HNSCC samples were classified into two distinct metabolic 
clusters.

2.4. Immune infiltration analysis

The ESTIMATE algorithm was used to assess the overall level of 
immune infiltration in tumor tissues based on gene expression data, a 
widely used method in previous studies.11,12 This algorithm provided 
three key scores: ImmuneScore, StromalScore, and ESTIMATEScore (the 
latter being inversely correlated with tumor purity), which were 
calculated for patients with HNSCC. In addition, immune cell infiltration 
scores for 22 immune cell types were calculated using the CIBERSORT 
tool (R package IOBR), providing a more detailed analysis of the im
mune microenvironment in each sample.13

2.5. Identification of metabolism-related genes (MRGs) in HNSCC

Differentially expressed genes (DEGs) between different metabolic 
pathway-related clusters were identified using the "limma" package in R, 
with a threshold of P < 0.05 and log2|fold change| ≥ 1.00. Genes 
meeting these criteria were considered as MRGs.

Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis was conducted to explore the biological functions and 
pathways associated with MRGs. The prognostic significance of MRGs in 
HNSCC was evaluated using univariate Cox regression. After identifying 
prognosis-related MRGs, potential gene clusters associated with MRGs 
were determined through unsupervised clustering analysis.

2.6. Risk model construction

In this study, we narrowed down the MRGs associated with HNSCC 
and identified key prognostic genes using univariate Cox regression and 
Lasso regression analysis. The selected key prognostic genes were then 
included in a stepwise multivariate regression model to construct the 
risk model. The model with the highest C-index was chosen as the 
optimal risk model. To evaluate the predictive accuracy of the risk score, 
time-dependent ROC curves were generated using the time ROC R 
package, which is commonly used to estimate ROC curves and the area 
under the curve (AUC) when dealing with censored data.14 The inverse 
probability weighting method was used to manage censored data during 
the estimation process.

2.7. Cell culture and transfection

The human oral adenosquamous carcinoma cell line Cal-27 and the 
human oral squamous cell carcinoma cell line HSC-6 were obtained from 
the American Type Culture Collection (ATCC, USA). Cells were cultured 
in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin–streptomycin, and main
tained at 37 ◦C in a humidified incubator with 5% CO2.

Transient transfections were performed using Lipofectamine 2000 
(Invitrogen, Carlsbad, USA) according to the manufacturer's protocol. 
Small interfering RNAs (siRNAs) targeting TNFAIP6 were synthesized by 
GenePharma (Suzhou, China) and transfected using the same reagent. 
The sequences of the siRNAs are provided in Supplementary Table S11.

2.8. Cell proliferation assay

Transfected cells were cultured for 24 h, then seeded at a density of 
2000 cells per well in a 96-well plate. After cell adhesion, they were 
incubated for 1, 3, and 5 days. At each time point, 10 μL of MTT reagent 
was added to each well, and cells were incubated for 4 h at 37 ◦C. The 
reaction was stopped by adding 100 μL of 10% sodium dodecyl sulfate 
(SDS) solution, and absorbance was measured at 570 nm using a 
microplate reader. The experiment was repeated three times to ensure 
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result accuracy and reproducibility.

2.9. Colony formation assay

CAL-27 and HSC-6 cells with TNFAIP6 knockdown were seeded at 
500 cells per well in 12-well plates and cultured for 14 days to allow 
colony formation. After incubation, the colonies were fixed with 4% 
paraformaldehyde at room temperature for 30 min, then stained with 
0.1% crystal violet for 30 min. Excess dye was removed by washing the 
stained colonies with PBS, air-dried, and then counted manually under a 
microscope.

2.10. Cell invasion and migration assay

Cell invasion and migration abilities were assessed using the Trans
well system and scratch assay respectively. For the invasion assay, cells 
were resuspended in serum-free medium and placed into the upper 
chamber of a Transwell system (8 μm pore size, Corning). The lower 
chamber contained medium with 20% fetal bovine serum (FBS) as a 
chemoattractant. After 24 h of incubation, non-invasive cells on the 
upper surface of the membrane were removed using a cotton swab. The 
invaded cells on the lower surface were then fixed, stained with crystal 
violet, and counted under a microscope.

For the scratch assay, transfected cells were seeded into 12-well 

Fig. 1. Flowchart of the development of the risk model and identification of key factors in HNSCC.
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plates and allowed to adhere. Once adhered, a scratch was made across 
the cell monolayer using a sterile pipette tip, and the cells were incu
bated for 24 h in serum-free medium. Migration was observed and 
quantified by imaging the wound area at 0 and 24 h.

2.11. RNA extraction and RT-qPCR

Total RNA was isolated from cultured cells using TRIzol reagent 
(Invitrogen, #15596018) (1 mL per well), following the manufacturer's 
instructions. The extraction process involved the addition of chloroform, 
isopropanol, and 75% ethanol for RNA purification. After extracting 

RNA, its concentration was measured using a NanoDrop spectropho
tometer. For cDNA synthesis, 1 μg of total RNA was reverse-transcribed 
using a reverse transcription kit (Takara, #RR047A) according to the 
manufacturer's instructions. Quantitative PCR (RT-qPCR) was then 
performed with specific primers listed in Supplementary Table S11. The 
RT-qPCR was carried out in a 10 μL reaction volume, and gene expres
sion was normalized to the housekeeping gene actin.

2.12. Statistical analysis

Differences between two groups were analyzed using either an 

Fig. 2. Prognostic relevance of metabolic pathway activity and its association with the tumor microenvironment in HNSCC. A− G. KM survival curves for overall 
survival (OS) based on the activity of seven metabolic pathways. H. Correlation heatmap showing the association of metabolic pathway activity with immune 
infiltration scores and tumor purity.
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unpaired Student's t-test or the Wilcoxon rank sum test, based on the 
data distribution. For comparisons involving more than two groups, one- 
way ANOVA or the Kruskal-Wallis test was applied, as appropriate. 
Spearman's correlation analysis was used to assess the relationship be
tween two variables. A two-sided P-value of <0.05 was considered sta
tistically significant, unless stated otherwise. All statistical analyses 
were conducted using R software (Version 4.4.2).

3. Results

3.1. Identification of key metabolic pathways in HNSCC

The flowchart was shown in Fig. 1. To explore the role of metabolic 
pathways in HNSCC, we conducted Gene Set Variation Analysis (GSVA) 
on RNA-seq data to measure the activity of seven key metabolic 

Fig. 3. Identification of metabolic pathway-related 
clusters and their association with TIME in HNSCC. 
A. Cumulative distribution function (CDF) curve for 
consensus clustering. B. Heatmap of consensus clus
tering, categorizing HNSCC samples into two 
metabolism-related clusters (C1 and C2). C. Heatmap 
depicting the activity of six metabolic pathways 
across the two clusters. D. Boxplots displaying the 
GSVA scores of the six key metabolic pathways be
tween clusters. E. Boxplots comparing immune infil
tration scores and tumor purity between the two 
clusters. F. Boxplots comparing the expression levels 
of immune checkpoints between C1 and C2. G. Box
plots illustrating differences in the infiltration of 
various immune cell types between the two clusters. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, 
compared to Cluster C1.
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pathways in tumor samples (Supplementary Table S2). Using the GSVA 
scores, samples were divided into high-activity and low-activity groups 
for each pathway, based on optimal cut-off values determined through 
survival analysis.

Kaplan-Meier survival curves showed a significant correlation be
tween the metabolic activity of the seven pathways and overall survival 
(OS) in HNSCC patients (Fig. 2A–G). Specifically, pathways such as 
amino acid metabolism, carbohydrate metabolism, lipid metabolism, 
nucleotide metabolism, the tricarboxylic acid (TCA) cycle, and vitamin 
and cofactor metabolism showed that patients with higher pathway 
activity exhibited significantly improved OS compared to those with 
lower activity (log-rank test, P < 0.05).

Interestingly, energy metabolism was the only pathway where GSVA 
scores failed to demonstrate a significant correlation with OS, suggesting 
that its activity may not be a critical determinant of survival outcomes in 
HNSCC. These findings highlight the heterogeneity in the prognostic 
relevance of metabolic pathways and underscore the potential impor
tance of specific metabolic activities in influencing tumor progression 
and patient outcomes.

The relationship between these six key metabolic pathways and the 
overall level of immune infiltration in HNSCC was initially examined.

Further analysis uncovered distinct relationships between the ac
tivity of these metabolic pathways and the tumor microenvironment. A 
robust positive correlation prevails among the immune infiltration 
levels (Supplementary Table S3). Specifically, among the six pathways 
significantly associated with overall survival, only amino acid meta
bolism, nucleotide metabolism, and the TCA cycle exhibited a negative 
correlation with immune infiltration levels (Fig. 2H). Conversely, the 
activity of these three pathways was positively correlated with tumor 
purity, suggesting a potential role in shaping an immunosuppressive 
tumor microenvironment. These findings imply that heightened activity 
in these pathways may contribute to reduced immune cell infiltration, 
while promoting a tumor-dominated microenvironment.

3.2. Identification of metabolic pathway-related clusters and their 
association with TIME in HNSCC

To further investigate the relationship between metabolic activity 
and TIME in HNSCC, unsupervised consensus clustering was performed 
based on the GSVA scores of six key metabolic pathways significantly 
associated with OS. The optimal number of clusters was determined to 
be two (k = 2) using the cumulative distribution function (CDF) and 
consensus matrix stability analysis (Fig. 3A and B).

These two clusters, designated as C1 and C2 (Supplementary 
Table S4), exhibited distinct metabolic activity profiles (Fig. 3C). Cluster 
C1 was characterized by significantly higher activity of amino acid 
metabolism, nucleotide metabolism, and the TCA cycle compared to 
Cluster C2, while Cluster C2 exhibited higher activity in carbohydrate, 
lipid, and vitamin & cofactor metabolism (Fig. 3D).

We also investigated the connection between metabolic clusters and 
the TIME in HNSCC. Cluster C2 displayed features indicative of a more 
immune-enriched TIME, including higher ImmuneScore and Stromal
Score, alongside lower tumor purity (Fig. 3E), suggesting higher 
immunosuppression in C1.

Furthermore, Cluster C2 demonstrated elevated expression of key 
immune checkpoint molecules such as CD274 (PD-L1) and HAVCR2, 
suggesting a more immune-active phenotype compared to Cluster C1 
(Fig. 3F).

Analysis of immune cell infiltration (Supplementary Table S5) 
revealed that Cluster C2 is characterized by a relatively less active im
mune response, with high levels of naive B cells, resting memory T cells, 
and M0 macrophages (Fig. 3G). This suggests an immune environment 
where immune cells are either in a resting or naive state, possibly 
indicating immune tolerance or an inability to effectively respond to the 
tumor. Cluster C1, on the other hand, exhibits higher levels of memory B 
cells, CD8+ T cells, activated CD4+ T cells, follicular helper T cells, 

regulatory T cells, NK cells, and monocytes, suggesting a more active 
immune response. However, the presence of regulatory T cells (Tregs) 
and monocytes indicates that the immune response might be suppressed 
or compromised, potentially favoring tumor survival (Fig. 3G). 
Together, these findings reveal that tumors in Cluster C1 may be un
dergoing a more active immune response, but with immune evasion 
mechanisms in place (e.g., Tregs), while tumors in Cluster C2 may be in 
a more immune-suppressive or immune-tolerant state, with a less 
effective immune response overall.

Moreover, the results highlight that distinct metabolic profiles are 
closely associated with immune activity and tumor purity, offering 
valuable insights into the interplay between metabolism and TIME in 
HNSCC.

3.3. Identification of metabolism-related gene clusters and their 
association with TIME in HNSCC

To further explore the functional implications of metabolism in 
HNSCC, differentially expressed genes (DEGs) between the initial 
metabolic clusters (C1 and C2) were identified using the R package 
"limma" (Supplementary Table S6). A total of 698 DEGs were classified 
as metabolism-related genes (Fig. 4A). Functional enrichment analysis 
of the MRGs identified pathways such as PI3K-Akt signaling, focal 
adhesion, and ECM-receptor interaction as significantly enriched, sug
gesting their potential roles in tumor progression and immune regu
lation15–17 (Fig. 4B).

Prognostic analysis using univariate Cox regression was performed 
on these MRGs, identifying 142 representative prognosis-related MRGs 
(Supplementary Table S7). Based on the expression profiles of these 142 
MRGs, HNSCC patients were classified into two distinct subgroups, 
designated as MRG-related clusters MC1 and MC2 (Fig. 4C) 
(Supplementary Table S8).

However, there was no significant difference in metabolic pathways 
between the MC1 and MC2 groups (Fig. 4D). Notably, Kaplan–Meier 
survival analysis demonstrated that MC2 had significantly longer OS 
compared to MC1 (p < 0.0001) (Fig. 4E).

Immune microenvironment analysis showed that Cluster MC2 is 
characterized by higher levels of naive B cells, plasma cells, and T cells 
(Fig. 4F), which suggests an immune environment with a mixed immune 
response, potentially with some activation of humoral and cellular im
munity. However, the presence of naive immune cells may also imply a 
less effective or incomplete immune response, possibly due to immune 
tolerance or insufficient antigen presentation. Cluster MC1, on the other 
hand, shows higher levels of M0 and M2 macrophages, which suggests a 
more immune-suppressive tumor microenvironment. The high levels of 
M2 macrophages in particular indicate that the tumor may be using 
immune-suppressive mechanisms to promote growth and evade immune 
surveillance. From these results, it is clear that tumors in Cluster MC2 
may be characterized by an ongoing but potentially ineffective immune 
response, while tumors in Cluster MC1 may have a more suppressive 
immune environment, favoring tumor progression and immune evasion.

Moreover, MC2 demonstrated significantly elevated expression of 
immune checkpoint molecules, including CTLA4, VSIR, and LAG3, 
which supports a more immune-active phenotype (Fig. 4G).

These analyses support the notion that the classification of HNSCC 
patients based on prognosis-related MRGs provides valuable insights 
into the metabolic and immune heterogeneity of the tumor microenvi
ronment, with implications for prognosis and therapeutic strategies.

Interestingly, no significant metabolic differences were observed 
between the MC1 and MC2 groups. However, there were notable dif
ferences in the TIME and overall survival, suggesting that the mecha
nisms underlying metabolism-related genes and immune regulation are 
more complex than a simple linear relationship. While metabolic 
pathway alterations appeared limited, it is possible that the immune 
microenvironment is influenced by the cumulative effect of subtle 
metabolic changes, which may not be readily captured by bulk-level 
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pathway analysis. Furthermore, non-metabolic factors such as epige
netic modifications, stromal composition, or cytokine-mediated 
signaling may also contribute to shaping the immune landscape. These 
findings highlight the intricate and multifactorial nature of tumor im
mune regulation and underscore the need for integrated multi-omic 
approaches to fully elucidate these interactions.

3.4. Construction of a metabolism-related risk model and its association 
with the TIME

From the 142 prognosis-related MRGs identified in the previous 
section, LASSO regression analysis was performed to select 32 key 
prognosis-related MRGs (Supplementary Table S9). Next, stepwise 
multivariate Cox regression analysis was performed to develop an 
optimal risk model, which incorporated 16 core MRGs as the predictive 
signature. Risk scores for each sample were calculated based on the 
expression levels of these 16 genes (Supplementary Table S10). ROC 
curve analysis validated the reliability of the risk model, with an AUC 

value above 0.7 for predicting 1-year, 3-year, and 5-year OS (Fig. 5A).
Patients were divided into high-risk and low-risk groups based on the 

optimal cutoff value of the calculated risk score. Survival analysis 
demonstrated that patients in the high-risk group had significantly 
worse OS compared to the low-risk group (P < 0.0001, HR = 0.35 [95% 
CI: 0.28–0.50]) (Fig. 5B).

Functional analysis revealed significant enrichment of the 16 core 
MRGs in pathways associated with tumor metabolism and immune 
regulation. Notably, patients in the high-risk group exhibited lower 
infiltration of immune cells, such as B cells and CD8+ T cells, compared 
to the low-risk group (Fig. 5C). This suggests a more immunosuppressive 
microenvironment in high-risk patients, which may contribute to their 
poorer prognosis.

The sankey plot (Fig. 5D) illustrates the progression from metabolic 
clusters (C1 and C2) to MRG-related clusters (MC1 and MC2). The ma
jority of high-risk samples are derived from MC1, while most of the MC2 
samples are classified into the low-risk group.

The results display two different visualizations of the key MRGs 

Fig. 4. Identification of metabolism-related gene 
clusters and their association with TIME in HNSCC. A. 
Volcano plot showing the differentially expressed 
genes (DEGs) between the metabolic clusters C1 and 
C2. B. Bubble plot showing enriched pathways from 
KEGG analysis of the MRGs. C. Heatmap of unsuper
vised clustering based on MRGs, dividing the samples 
into two MRG-related clusters (MC1 and MC2). D. 
Boxplots comparing the GSVA scores of the six key 
metabolic pathways between MC1 and MC2. E. 
Kaplan–Meier survival curve demonstrating OS dif
ferences between MC1 and MC2. F. Boxplots illus
trating differences in immune cell infiltration scores 
between MC1 and MC2. G. Boxplots showing the 
expression of immune checkpoint molecules between 
MC1 and MC2. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001, compared to MC1.
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identified in the multi-factorial Cox regression analysis and their asso
ciation with survival prognosis. In Fig. 5E, a forest plot illustrates the 
hazard ratios (HRs) of the 16 core MRGs identified from the Cox 
regression model. The HR values for each gene are shown along with 
their corresponding 95% confidence intervals (CIs). This plot highlights 
that genes such as ADCY2 and TNFAIP6 are associated with an increased 
risk of poor survival prognosis (Fig. 5E).

The heatmap illustrates the expression levels of the identified MRGs 
across different samples. The heatmap highlights the differential 
expression of these genes in relation to survival prognosis, providing a 
visual representation of how gene expression correlates with survival 
outcomes. The survival prognosis-expressions are generally consistent 
with the HRs shown in the forest plot (Fig. 5F).

To further validate the prognostic value and immunological rele
vance of the metabolism-related risk model, we conducted an external 
validation using the GSE65858 dataset. Consistent with the training 
cohort, KM survival analysis showed that patients in the high-risk group 

had significantly worse OS compared to those in the low-risk group 
(Fig. 6A, Supplementary Table S10). The time-dependent ROC curves 
demonstrated good predictive accuracy of the risk model for 1-, 3-, and 
5-year survival, with AUCs of 0.69, 0.72, and 0.71, respectively 
(Fig. 6B). In addition, compared to the low-risk group, analysis of the 
tumor immune microenvironment revealed that patients in the high-risk 
group exhibited significantly higher stromal and immune scores, and 
lower tumor purity (Fig. 6C), further supporting the model's association 
with a distinct immune landscape.

In conclusion, this metabolism-related risk model provides a robust 
tool for predicting prognosis and reflects the immune microenviron
ment's heterogeneity in HNSCC patients, offering potential implications 
for personalized therapy.

Fig. 5. Construction of a metabolism-related risk 
model and its association with the TIME. A. ROC 
curves for predicting 1-year, 3-year, and 5-year OS. B. 
KM survival curves comparing OS between high-risk 
and low-risk groups. C. Comparisons of immune cell 
infiltration levels between high-risk and low-risk 
groups. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001, compared to the low-risk group. D. 
Sankey diagram illustrating the cross-correlation be
tween metabolism pathways, MRGs, and risk scores. 
E. Multivariate Cox regression analysis of the 16 core 
MRGs in the risk model. F. Heatmap showing the 
relationship between the expression levels of 16 core 
MRGs and survival prognosis.
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3.5. TNFAIP6 is overexpressed in cancer cells and strongly linked to TIME 
of HNSCC

In our study, we aimed to focus on genes positively associated with 
risk (HR >1) for further functional validation, as these genes are more 
likely to contribute to tumor progression and may serve as potential 
therapeutic targets. Although GRIA3 showed the most significant P- 
value (P = 2.1e-4) and a relatively narrow confidence interval (HR =
0.83), it exhibited a HR less than 1, indicating a potential protective role 
rather than a risk-associated effect (Fig. 5 E). Therefore, GRIA3 was not 
selected for further investigation.

Among the genes with HR > 1, the top three—AC011351.1, 
PPIAP93, and PCDHGC3—either belong to pseudogenes or lack suffi
cient functional annotation and experimental validation in cancer- 
related studies. These limitations make them less suitable for down
stream mechanistic exploration.

We therefore selected TNFAIP6, which ranked fourth among the risk- 
associated genes (HR = 1.21, P = 0.01). TNFAIP6 is a well-annotated 
protein-coding gene with documented roles in inflammation and can
cer. Its biological relevance and availability of validated experimental 
tools made it a feasible and meaningful candidate for further functional 
studies in the context of tumor progression and immune regulation.

We first investigated TNFAIP6 expression across pan-cancer datasets 
and found that TNFAIP6 is significantly overexpressed in most tumor 
tissues compared to normal ones (Fig. 7A). TNFAIP6, also known as 
TNF-α-induced protein 6, is involved in various cellular processes, 
including inflammation and tissue remodeling.18 Recent studies have 
highlighted its possible involvement in tumor growth and immune 
regulation.19 Elevated TNFAIP6 expression has been linked to tumor 
development, immune escape, and poor prognosis in several cancer 
types, suggesting its importance in cancer biology and as a potential 
treatment target.20,21

To further validate the risk model, TNFAIP6 was selected for analysis 
as it showed a significant HR in the risk model, excluding pseudogenes. 
Using the optimal cutoff value for TNFAIP6 expression, patients were 
categorized into high- and low-expression groups. Kaplan-Meier sur
vival analysis showed that high TNFAIP6 expression was linked to 
significantly poorer OS (Fig. 7B). TNFAIP6 expression was significantly 
higher in metabolic cluster C2 and MRG-related cluster MC1 compared 
to C1 and MC2, respectively (P < 0.0001), indicating its strong associ
ation with these high-risk patient subgroups (Fig. 7C).

TNFAIP6 expression showed positive correlations with several im
mune checkpoint-related genes, including PD-L1, HAVCR2, and CTLA4 
(Fig. 7D). Patients with high TNFAIP6 expression exhibited significantly 
higher levels of these checkpoint genes (P < 0.05). Infiltration analysis 
demonstrated notable differences between the high and low TNFAIP6 
expression groups. High levels of TNFAIP6 are associated with lower 
infiltration of CD4+ and CD8+ T cells, and higher levels of M0 and M2 
macrophages (Fig. 7E). This suggests that TNFAIP6 may be involved in 
immune evasion by inhibiting T cell activity and promoting M2 
macrophage polarization. Combined with the data from Fig. 7D, which 
shows a positive correlation between TNFAIP6 and PD-L1 expression, 
we hypothesize that TNFAIP6 may influence T cell activity through the 
regulation of PD-L1 (P < 0.05).

Compared to the low-expression group, the high TNFAIP6 expression 
group had significantly higher immune scores, stromal scores, and 
tumor purity (P < 0.0001), reflecting its association with immune 
microenvironment modulation.

To externally validate the association between TNFAIP6 expression, 
patient prognosis, and immune characteristics, we analyzed the 
GSE65858 dataset. Consistent with the TCGA results, KM survival 
analysis in the GSE65858 cohort revealed that patients with high 
TNFAIP6 expression had significantly worse OS (Fig. 8A). Moreover, 
high TNFAIP6 expression was associated with significantly elevated 

Fig. 6. External validation of the metabolism-related risk model in the GSE65858 cohort. A. KM survival analysis showing that patients in the high-risk group had 
significantly worse overall survival compared to those in the low-risk group. B. ROC curves of the risk model predicting 1-, 3-, and 5-year overall survival, with AUCs 
of 0.69, 0.72, and 0.71, respectively. C. Comparison of Stromalscore, Immunescore, and Tumor purity between high- and low-risk groups based on the ESTIMATE 
algorithm. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, compared to the low-risk group.
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stromal scores, immune scores, and decreased tumor purity (Fig. 8B), 
further highlighting its link to TIME. Immune infiltration analysis using 
the TIMER algorithm demonstrated that patients in the high-expression 
group exhibited increased infiltration of neutrophils, macrophages, and 

dendritic cells (Fig. 8C).
These findings reinforce the role of TNFAIP6 and highlight its po

tential as a prognostic biomarker and immunomodulatory target in 
HNSCC.

Fig. 7. Validation of TNFAIP6 expression and its as
sociation with TIME. A. Violin plot demonstrates the 
significantly higher expression levels of TNFAIP6 in 
most tumor samples compared to normal tissues, **P 
< 0.01, ***P < 0.001, ****P < 0.0001. B. KM curve 
showing high TNFAIP6 expression is associated with 
significantly poorer OS. C. Boxplot showing TNFAIP6 
expression in metabolic clusters. ****P < 0.0001, 
compared to C1 or MC2. D. Boxplots of TNFAIP6 
expression and immune checkpoint-related genes. E. 
Boxplots of immune cell infiltration showing signifi
cant differences between high and low TNFAIP6 
expression groups. F. Boxplots of immune scores, 
stromal scores, and tumor purity. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, compared to the 
low TNFAIP6 expression group.
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3.6. TNFAIP6 is a potential prognostic marker and associated with tumor 
progression

To further validate the role of TNFAIP6 in HNSCC, we performed a 
series of in vitro experiments following TNFAIP6 knockdown in HSC-6 
and CAL-27. These experiments included cell proliferation, colony for
mation, migration, and invasion assays to assess the impact of TNFAIP6 
depletion on tumor cell behavior.

Preliminary results indicate that knockdown of TNFAIP6 led to a 
significant reduction in cell proliferation, colony formation, migration, 
and invasion (Fig. 9A–E), consistent with our hypothesis that TNFAIP6 
plays a role in promoting tumor growth and metastasis. These findings 
support the idea that TNFAIP6 may contribute to the aggressiveness of 
HNSCC and its potential as a therapeutic target.

This study preliminarily suggests that TNFAIP6 may play a role in 
promoting tumor cell migration in HNSCC. In recent years, increasing 
evidence has highlighted the involvement of TNFAIP6 in the 

proliferation and metastasis of various cancers. For instance, TNFAIP6 is 
significantly upregulated in gastric cancer tissues and is associated with 
deeper tumor invasion, lymph node metastasis, and higher TNM stages. 
Knockdown of TNFAIP6 was shown to inhibit cell proliferation and 
migration, indicating its oncogenic potential.22 In hepatocellular carci
noma, TNFAIP6 has been reported to promote tumor progression by 
enhancing glycolysis through the c-Myc/PKM2 axis.23 Furthermore, 
studies in urothelial carcinoma revealed that high TNFAIP6 expression 
is strongly correlated with poor prognosis and serves as an independent 
predictor of disease-specific and metastasis-free survival.24

Although the role of TNFAIP6 in promoting tumor development has 
been validated in several types of solid tumors, its molecular function 
and regulatory mechanisms in HNSCC remain largely unexplored. 
Future investigations may focus on whether TNFAIP6 exerts its effects 
through classical oncogenic pathways such as Wnt/β-catenin or others.

Fig. 8. External validation of the association between TNFAIP6 expression, survival, and immune characteristics in the GSE65858 cohort. A. Kaplan–Meier survival 
analysis showing that patients with high TNFAIP6 expression had significantly poorer overall survival. B. Comparison of stromal score, immune score, and tumor 
purity between high and low TNFAIP6 expression groups. C. Immune cell infiltration analysis based on the TIMER database. DC: dendritic cells. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, compared to the low TNFAIP6 expression group.
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4. Discussion

The integration of metabolic and immune profiles provides a more 
nuanced understanding of HNSCC biology and identifies TNFAIP6 as a 
promising target for immunotherapy. Its role in immune checkpoint 
regulation makes it a potential candidate for combination therapy with 
checkpoint inhibitors, offering a new avenue for improving therapeutic 
outcomes in HNSCC patients. Furthermore, the risk model derived from 
this study could be used to stratify patients for personalized treatment 

strategies, enhancing the precision of therapeutic interventions.
Several studies have reported that the expression level of TNFAIP6 is 

associated with the prognosis of HNSCC patients.25 However, there is 
limited research on the relationship between TNFAIP6 and the immune 
microenvironment or tumor metabolism in HNSCC.26 Our study expands 
on these findings by providing new insights into this relationship, sug
gesting that TNFAIP6 may not only affect tumor progression through its 
direct role in immune modulation but also influence tumor metabolism, 
thereby contributing to a more aggressive tumor phenotype. This dual 

Fig. 9. Functional validation of TNFAIP6 knockdown 
in HNSCC cells. A. qPCR analysis showing the effi
cient knockdown of TNFAIP6 expression in HNSC 
cells. B. MTT assay demonstrating the effect of 
TNFAIP6 knockdown on HNSC cell proliferation. C. 
Colony formation assay showing the impact of 
TNFAIP6 knockdown on HNSC cell clonogenicity. D. 
Invasion assay showing the reduced invasive ability 
of TNFAIP6 knockdown HNSC cells. E. Scratch 
wound healing assay showing that TNFAIP6 knock
down suppressed the migration of HNSC cells. Si-NC: 
normal cell group; si-TNFAIP6: TNFAIP6 knockdown 
cell group. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001, compared to the si-NC group.

M. Lian et al. Journal of Holistic Integrative Pharmacy 6 (2025) 235–248

246 



role opens up opportunities for targeting TNFAIP6 in a more holistic 
therapeutic approach that addresses both immune evasion and meta
bolic reprogramming in tumors.

Our findings are in line with previous research on the immune- 
modulating effects of TNFAIP6, which has been implicated in various 
cancers. For instance, similar to our observations in HNSCC, TNFAIP6 
has been shown to regulate immune checkpoints, such as PD-1/PD-L1, in 
other malignancies, including breast cancer and melanoma,27,28

including head and neck cancer.29,30 This supports the hypothesis that 
TNFAIP6 could serve as a universal immune-modulating target across 
different tumor types, further establishing its importance in cancer 
immunotherapy. However, our study differs from earlier studies by 
revealing the specific role of TNFAIP6 in modulating the immune 
microenvironment in HNSCC, with a particular focus on macrophage 
polarization and T cell exclusion, which has not been as extensively 
explored in other cancers.

Although the precise mechanisms by which TNFAIP6 contributes to 
immune regulation remain to be fully elucidated, our data suggest that 
TNFAIP6 may facilitate tumor immune evasion through multiple path
ways. The positive correlation between TNFAIP6 expression and key 
immune checkpoint molecules such as PD-L1, CTLA4, and HAVCR2 
implies that TNFAIP6 may be involved in the upregulation of inhibitory 
immune signals, thereby dampening T cell-mediated anti-tumor im
munity. In addition, tumors with high TNFAIP6 expression were char
acterized by reduced CD4+ and CD8+ T cell infiltration and increased 
M0 and M2 macrophage presence, indicating a shift toward an immu
nosuppressive microenvironment. Given the known role of M2 macro
phages in promoting tumor progression and suppressing adaptive 
immune responses, it is plausible that TNFAIP6 promotes macrophage 
polarization and T cell exclusion. Previous studies have demonstrated 
that TNFAIP6 interacts with hyaluronan and contributes to extracellular 
matrix remodeling,31,32 which may influence immune cell trafficking 
and activation. Taken together, these findings support the hypothesis 
that TNFAIP6 may act as an immunoregulatory molecule in the tumor 
microenvironment, potentially through modulating PD-L1 expression 
and macrophage phenotype, warranting further mechanistic 
investigation.

While this study provides some insights, there are some limitations. 
First, the findings are based on bioinformatics and preliminary in vitro 
experiments, necessitating further validation in preclinical and clinical 
settings. Second, the underlying mechanisms of TNFAIP6 in regulating 
immune checkpoints and its interaction with metabolic pathways war
rant deeper investigation. Future studies should focus on elucidating 
these mechanisms and evaluating the synergistic effects of targeting 
TNFAIP6 with existing immunotherapies in HNSCC. Additionally, 
exploring the potential of combining TNFAIP6 inhibition with metabolic 
modulators could provide new therapeutic strategies that simulta
neously disrupt tumor metabolism and enhance immune responses.

Finally, clinical trials are necessary to assess the potential of tar
geting TNFAIP6 alongside other treatments, like immune checkpoint 
inhibitors or metabolic drugs. Long-term studies on the link between 
TNFAIP6 expression and how patients respond to immunotherapy could 
offer useful information on its role as a biomarker and treatment target.

5. Conclusion

In conclusion, our study highlights the important role of metabolic 
pathways in influencing the immune environment of HNSCC and iden
tifies TNFAIP6 as a key factor. By connecting metabolic reprogramming 
and immune regulation, TNFAIP6 serves as a novel prognostic marker 
and a potential target for immunotherapy, paving the way for more 
effective and personalized treatment strategies in HNSCC.
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