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A B S T R A C T

Objective: To study the chemical compositions from Penicillium sp. SCSIO 41425 and explore their DPPH radical
scavenging activity.
Methods: Ethyl acetate extract of Penicillium sp. SCSIO 41425 was separated and purified by silica gel, Ostade-
cylsilane (ODS), semi-preparative HPLC, and thin layer chromatography, and their structures were determined
by spectroscopic analysis and comparison with the reported literatures.
Results: A total of 18 compounds were isolated from Penicillium sp. SCSIO 41425, including one new compound,
(20R,30R)-4-(3-hydroxybutan-2-yl)-3,6-dimethylbenzene-1,2-diol (1) and seventeen known compounds (2–18).
Their structures were elucidated by detailed NMR and ECD calculations. Compounds 4 and 5 exhibited potent
DPPH radical scavenging activity, with EC50 values of 8.42 and 6.62 μg/mL, which were stronger than the positive
control ascorbic acid (EC50, 11.22 μg/mL).
Conclusion: This study expands the natural product library of marine cold-seep-derived fungus and provides
marine-derived drug source molecules for potent antioxidants.
1. Introduction

Marine derived microorganisms can produce secondary metabolites
with rich structures and activities.1–3 Deep sea cold seeps are typical
deep-sea chemical synthesis driven ecosystems, characterized by rich
methane fluid emissions and unique sulfur redox reactions, which give
rise to abundant cold spring microorganisms.4,5 Deep sea fungi play an
important role in deep-sea microorganisms, producing a series of sec-
ondary metabolites with rich structures and activities, such as alkaloids,
polyketides, peptides, etc. They have anti-inflammatory, anti-tumor and
other biological activities.6–8 Penicillium sp., as the second most common
species of marine fungi, are a rich source for discovering active com-
pounds.6,9 The novel structures penoxahydrazones A–C and
opical Marine Bio-Resources and
ces, Guangzhou, 510301, China.

.

form 23 October 2024; Accepted
s by Elsevier B.V. on behalf of KeA
-nd/4.0/).
penoxazolones A–B, isolated from the cold-seep-derived fungus Penicil-
lium oxalicum, some of them exhibited inhibitory effects on some marine
phytoplankton and marine-derived bacteria.10 Poloncosidins A–F, iso-
lated from the deep-sea-derived fungus Penicillium polonicum CS-252,
showed inhibitory activities against several human and aquatic
pathogens.11

In our study, eleven benzene derivatives (1–11), three polyketide
compounds (12–14), two alkaloid compounds (15–16), one linear
dipeptide derivative (17), and one fatty acid (18) (Fig. 1) were isolated
from a cold-seep-derived fungus Penicillium sp. SCSIO 41425. Herein, the
specifics of the isolation, structural elucidation, and antioxidant activity
assessment of the isolated compounds were reported.
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Fig. 1. Structures of compounds 1–18.
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2. Materials and methods

2.1. General experimental procedures

The Chirascan circular dichroism spectrometer (Applied Photo-
physics, Leatherhead Surrey, UK) was used to perform ECD spectra, while
optical rotations were calculated using an Anton Paar MPC500 (Anton,
Graz, Austria) polarimeter. A Shimadzu UV-2600 PC spectrometer (Shi-
madzu, Beijing, China) was used to record the UV spectra. The IR spectra
were detected by an IR Affinity-1 spectrometer (Shimadzu). Using a
Bruker maXis Q-TOF mass spectrometer (Bruker BioSpin International
AG, F€allanden, Switzerland), high-resolution electrospray ionization
mass spectroscopy (HRESIMS) spectra were acquired. The NMR spectra
were tested on a Quantum-I Plus 500 MHz (Q-one Instrument Co., Ltd,
Wuhan, China) operating at 500 MHz for 1H NMR and 125 MHz for 13C
NMR, and were collected on a AVANCE III HD 700 MHz (Bruker
Switzerland AG, F€allanden, Switzerland) operating at 700 MHz for 1H
NMR and 175 MHz for 13C NMR. Tetramethylsilane was used as an in-
ternal standard. ODS columns (ChromCore 120 C18, 10� 250 mm, 5 μm;
COSMOSIL πNAP 10 � 250 mm; COSMOSIL 5C18-AR-II 10 � 250 mm)
were used in semipreparative high-performance liquid chromatography
(HPLC) which was performed on the Hitachi Primaide with a DAD de-
tector (Hitachi, Tokyo, Japan). Silica gel (200–300 mesh) was used to
perform the column chromatography and spots was detected on TLC
(Qingdao Marine Chemical Factory, Qingdao, China) under 254 nm UV
light, respectively. Tianjin Fuyu Chemical and Industry Factory, located
in Tianjin, China, supplied all of the analytical-grade solvents that were
used.

2.2. Fungal material

The strain Penicillium sp. SCSIO 41425 was isolated from a cold-seep
sediment that was taken from the South China Sea inMay 2022 at a depth
of 1439 m. It was kept in storage at the Chinese Academy of Sciences
(CAS) Key Laboratory of Tropical Marine Bioresources and Ecology,
South China Sea Institute of Oceanology, CAS, Guangzhou, China. Ac-
cording to BLAST analysis of the ITS sequence (Supplementary Infor-
mation), the strain was named Penicillium sp. SCSIO 41425 which
revealed 90% of the strain's similarities to Penicillium citrinum
(NR_121224.1). The sequence was finally added to GenBank and
assigned the accession number PQ312694.
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2.3. Fermentation and extraction

For 7 days, the fungus Penicillium sp. SCSIO 41425 was grown stati-
cally onMAmedia at 26 �C, then cut into small pieces and inoculated into
the 1 L flask, which was incubated for 30 days using a rice medium (150 g
rice, 3.2% sea salt, 150 mL H2O) under static conditions. The entire
fermented culture was extracted five times using Ethyl acetate (EtOAc)
and eventually obtained the extract (317.7 g).

2.4. Isolation and purification

Using a step gradient elution of petroleum ether (PE)-dichloro-
methane (DCM) (ν:ν 1:0, 1:1, 0:1), DCM-methyl alcohol (CH3OH) (ν:ν
100:1, 100:3, 20:1, 10:1, 5:1, 2:1, 0:1), yielded twelve fractions (Frs.
1–12) based on TLC characteristics. Fr. 2 was separated by semi-
preparative HPLC (80% CH3OH/H2O, 2.5 mL/min) to obtain compound
18 (7.2 mg, tR 8.5 min). Fr. 3 to Fr. 6 were merged and was divided into
16 subfractions (Frs. 3-1–3-16) by ODS silica gel eluting with CH3OH/
H2O (5%–100%). Fr. 3-6 was separated by semipreparative HPLC (35%
CH3OH/H2O, 2.5 mL/min; 43% CH3OH/H2O, 0.04% formic acid, 2.5
mL/min) to obtain compound 4 (31.9 mg, tR 17.0 min) and compound 5
(2.2 mg, tR 12.5 min). Fr. 3-7 was separated by semipreparative HPLC
(55% CH3OH/H2O, 2.5 mL/min) to obtain compound 12 (16.1 mg, tR
20.5 min). Fr. 3-9 was divided into 14 subfractions (Frs. 3-9-1–3-9-14) by
ODS silica gel eluting with CH3OH/H2O (10%–100%). Compound 13
(10.4 mg, tR 13.8 min) was purified from Fr. 3-9-10 by semipreparative
HPLC (76% CH3OH/H2O, 3.0 mL/min). Fr. 3-11 was separated by sem-
ipreparative HPLC (70% CH3OH/H2O, 3.0 mL/min) to obtain compound
8 (9.6 mg, tR 24.3 min) and 9 (5.1 mg, tR 27.8 min). Fr. 7 to Fr. 9 were
merged and was divided into 13 subfractions (Frs. 7-1–7-13) by ODS
silica gel eluting with CH3OH/H2O (20%–100%). Fr. 7-4 was separated
into five components (Frs. 7-4-1–7-4-5) by semipreparative HPLC (40%
CH3OH/H2O, 3.0 mL/min). Compound 1 (5.1 mg, tR 19.4 min) was pu-
rified from Fr. 7-4-1 by semipreparative HPLC (38% CH3OH/H2O, 2.5
mL/min). Compound 14 (2.7 mg, tR 32.7 min) was purified from Fr. 7-4-2
by semipreparative HPLC (33% CH3OH/H2O, 2.5 mL/min). Fr. 7-4-3 was
separated by semipreparative HPLC (35% CH3CN/H2O, 0.04% formic
acid, 3.0 mL/min) to obtain compound 7 (6.1 mg, tR 9.4 min). Compound
6 (6.4 mg, tR 31.2 min) and compound 10 (3.1 mg, tR 33.6 min) were
purified from Fr. 7-4-5 by semipreparative HPLC (30% CH3OH/H2O, 3.0
mL/min). Fr. 7-5 to Fr. 7-6 were merged once more and divided into 10
subfractions (Frs. 7-5-1–7-5-10) by ODS silica gel eluting with CH3OH/
H2O (5%–100%). Compound 17 (5.5 mg, tR 36.2 min) was purified from



Table 1
1H NMR (500 MHz) and 13C NMR (125 MHz) data for compound 1 in DMSO-d6.

Position δH (ppm), J (Hz) δC (ppm)

1 – 153.2
2 – 153.0
3 – 113.6
4 – 140.3
5 6.28, s 105.1
6 – 108.3
10 1.04, d, (7.0) 15.2
20 2.93, m 41.1
30 3.66, m 69.1
40 0.93, d, (6.2) 19.1
3-CH3 1.94, s 11.5
6-CH3 2.02, s 9.1

Fig. 2. Experimental and calculated ECD spectrum of 1.
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Fr. 7-5-2 by semipreparative HPLC (65% CH3OH/H2O, 0.04 % formic
acid, 2.8 mL/min). Fr. 10 was separated by semipreparative HPLC (85%
CH3OH/H2O, 3.0 mL/min) to offer four subfractions (Frs. 10-1–10-4).
Compound 2 (10.0 mg, tR 14.2 min) and compound 11 (3.8 mg, tR 13.4
min) were purified from Fr. 10-1 by semipreparative HPLC (45%
CH3OH/H2O, 2.5 mL/min). Fr. 10-3 was separated by semipreparative
HPLC (50% CH3OH/H2O, 2.2 mL/min) to obtain compound 3 (8.5 mg, tR
9.2 min). Compound 15 (15.6 mg, tR 10.5 min) and compound 16 (11.5
mg, tR 12.0 min) were purified from Fr. 10-4 by semipreparative HPLC
(68% CH3OH/H2O, 3.0 mL/min).

(20R,30R)-4-(3-hydroxybutan-2-yl)-3,6-dimethylbenzene-1,2-diol (1):
Red brown oil; [α]25D –9.7 (c 0.1, CH3OH); UV (CH3OH): λmax (log ε): 206
(4.52); ECD (0.48 mM, CH3OH) λmax 201 (–6.81), 216 (–1.05), 232
(–2.93), 264 (þ0.29); IR (film) νmax 3348, 1645, 1634, 1101 cm-1; 1H and
13C NMR data see Table 1; HRESIMS m/z 211.1330 [MþH]þ (calcd. for
C12H19O3

þ, 211.1329).

2.5. Computational methods

Optimized the four conformational structures of compound 1 using
MM2 molecular force field in ChemBio3D Ultra 14.0, and conducted
random conformational searches for optimized structures using MMFF
molecular force field in Spartan'14 software. Selected reasonable con-
formations beyond 5% Boltzmann distribution from the results. Then,
Gaussian 09W software density functional DFT was used for further
optimization at the B3LYP/6-31þG (d) level. The optimized stable
conformationwas subjected to energy calculation at the B3LYP/6-311þG
(d, p) level, and the calculated results were weighted averaged using the
Boltzmann distribution. Next, Gaussian View 6.0 software was used to
adjust the half width parameter (0.3–0.4 eV) and exported the ECD curve
data. Ultimately, ECD spectra were drawn using Origin 2021
software.12,13

In the meanwhile, MMFF was used to calculate the 13C NMR chemical
shift in Spartan'14 software, selecting conformers of 1 with a Boltzmann
population of greater than 5%. The Gaussian 09W software density
functional DFT was used to re-optimize the conformers at the B3LYP/6-
31G (d) level. GIAO was used to compute the chemical shifts of the NMR
data at the PCM/mPW1PW91/6-311G (d, p) level in dimethylsulfoxide.
The Boltzmann distribution theory was used to average the simulated
spectra of the conformers in order to obtain the final spectra. The DP4þ
probability analysis was carried out using shielding constants. The Excel
spreadsheet, which was freely accessible at sarotti-NMR.weebly.com,
was used to perform the DP4þ computations.12

2.6. Antioxidant activity assay

The effect of compounds on DPPH radicals was estimated referring to
the previous methods.14,15 Generally, the compounds were dissolved in
DPPH methanol solution to get a final concentration of 2.5–250 μg/mL.
The mixture was thoroughly shaken before being allowed to stand at
room temperature in the dark for 30 mins, measured the OD517 values
259
using the PerkinElmer Enspire Multi-mode micro-orifice detector and
enzyme labeling instrument (PerkinElmer, Waltham, MA, USA). This
experiment used ascorbic acid as a positive control. Then, used the for-
mula to calculate the free radical scavenging rate K (%) based on the
obtained OD517 value, and determined the EC50 value using Origin 2021.

3. Results and discussion

Compound 1 was obtained as a red brown oil and was determined to
have the molecular formula C12H18O3 from the HRESIMS data at m/z
211.1330 [MþH]þ. The 1D NMR data of 1 (Table 1) showed signals of
five unsaturated carbon signals (δC 153.2, 153.0, 113.6, 140.3, 108.3),
one aromatic methine (δH/C 6.28/105.1), one oxygen-containing satu-
rated methine (δH/C 3.66/69.1), one saturated methine (δH/C 2.93/41.1),
and four methyls (δH/C 1.94/11.5, 2.02/9.1, 1.04/15.2, and 0.93/19.1).
The NMR data of 1was carefully analyzed and found to be comparable to
4-(3-hydroxybutan-2-yl)-3,6-dimethylbenzene-1,2-diol with its planar
structure.16 By calculating the CD, the measured curve of compound 1
was fitted with the theoretical curves of (20R,30R)-1, (20R,30S)-1, (20S,
30R)-1, and (20S,30S)-1. The results showed that the trend of the curve of
(20R,30R)-1 and (20R,30S)-1 were basically consistent with the measured
curve (Fig. 2). This resulted in two unassigned chiral centers (CH-20 and
CH-30) with two probable diastereoisomers, 3'R and 3'S. The PCM solvent
continuum model with dimethylsulfoxide as a solvent was then studied
using the gauge independent atomic orbital (GIAO) strategy at the
mPW1PW91/6-311G (d, p) level of theory. With a 99.77% confidence
level, the DP4þ probability analysis revealed that the configuration (20R,
30R)-1was the most likely stereoisomer. Therefore, it was confirmed that
the compound 1 was a new configuration compound, and the final
structure of 1 was determined to be (20R,30R)-4-(3-hydroxybutan-2-yl)-3,
6-dimethylbenzene-1,2-diol.

The structures of the seventeen known compounds were identified as
phenol A (2)17,18, phenol A acid (3)17,19, 2,4-dihydroxy-3,5,6-trimethyl-
benzene (4)20, ferulic acid (5)21, 2,4-dihydroxy-3,5,6-trimethylbenzoic
acid (6)22, methyl 2-(2-acetyl-3,5-dihydroxy-4,6-dimethylphenyl)ace-
tate (7)23, sorbicillin (8)24,25, 20,30-dihydrosorbicillin (9)24,26, decar-
boxydihydrocitrinin (10)27, methyl 2-(6-bromo-3,4-dihydroxyphenyl)
acetate (11)28, stoloniferol A (12)29, penicitrinone A (13)27, 2,3,5-tri-
methyl-6-(3-oxobutan-2-yl)-4H-pyran-4-one (14)30, quinolactacin A2
(15)31, quinolactacin A1 (16)31, N-acetyl-L-valyl-L-phenylalanine methyl
ester (17)32 and α-linoleic acid (18)33–35 by contrasting the spectroscopic

http://sarotti-NMR.weebly.com


Table 2
DPPH radical scavenging activity assay.

Compounds 1 2 3 4 5 7 10 13 Ascorbic acid

EC50 (μg/mL) 41.37 41.07 32.59 8.42 6.62 55.95 19.74 53.83 11.22
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data with those documented in the literature.
Free radicals mediate the occurrence and development of many dis-

eases in vivo, such as cancer, diabetes, etc.36,37 In order to investigate the
free radical scavenging activity of the isolated compounds, the DPPH
radical scavenging activity of the isolated compounds was tested using a
96 well plate method. The results in Table 2 indicated that compounds 4
(EC50, 8.42 μg/mL) and 5 (EC50, 6.62 μg/mL) demonstrated potent
radical scavenging capacity, which were superior to the positive control
(ascorbic acid, EC50, 11.22 μg/mL). In addition, compounds 1–3 and 10
also exhibited strong DPPH scavenging activity. Comparing the activities
of compounds 1, 2, and 3, it could be observed that their activities were
stronger when a carboxyl group was attached to the benzene ring than
when a hydroxyl group was attached, indicating that attaching a carboxyl
group to the benzene ring could enhance free radical scavenging activity.
Comparing the activities of compounds 5 and 7, it was found that their
activities decreased when the carboxyl group on the chain was esterified.
The above analysis indicated that carboxyl groups had a significant
impact on the resistance of compounds to free radicals. It was speculated
that this was due to the reaction between carboxyl groups (�COOH) and
free radicals (�OH), which enhanced their free radical scavenging ability.
Research had shown that excessive production of free radicals in the
body was considered a trigger for various damages in biological species
and a deactivator of enzymes, leading to the occurrence of many dis-
eases.38 Therefore, compounds 4 and 5 had good potential in anti-tumor
and other diseases, which may develop into tiny therapeutic molecules
derived from marine cold-seep.

4. Conclusion

A new benzene derivative, (20R,30R)-4-(3-hydroxybutan-2-yl)-3,6-
dimethylbenzene-1,2-diol (1), together with seventeen known com-
pounds (2–18) were isolated from the secondary metabolites of rice
fermentation by Penicillium sp. SCSIO 41425, a fungus derived from deep-
sea cold-seep. Compound 1 was a new compound reported for its
configuration for the first time, and compound 17 was a linear dipeptide
isolated from a deep-sea cold-seep strain for the first time, which had
good antibacterial activity of its similar chemicals.39,40 Compounds 4
(EC50, 8.42 μg/mL) and 5 (EC50, 6.62 μg/mL) had strong free radical
scavenging ability, which were stronger than the positive control
(ascorbic acid, EC50, 11.22 μg/mL), which had the potential to become
potent antioxidants. In summary, the active and diverse compounds
isolated in this study further expand the pool of active natural products
from marine cold-seep.
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