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A B S T R A C T

Rheumatic immune disorders are a group of conditions that affect the immune system, leading to various clinical
symptoms. These diseases can cause pain, reduce the quality of life, and increase the risk of death in severe cases.
Diagnosis and treatment are very complex due to the different types of disease and individual differences and the
unknown pathogenesis of the disease. Further research is necessary to provide new clues for disease treatment.
Organoid technology that makes up for the shortcomings of animal model species differences can better simulate
disease onset mechanisms than animal models. It can be used as a screening platform for new therapeutic targets,
as well as personalized settings based on patient-derived organoids, promising as an effective tool for the study of
rheumatic immune diseases. Therefore, the article summarizes studies related to organoids and their application
in rheumatic immune diseases. It also provides an outlook on the potential of organoids in this field and discusses
the challenges that need to be addressed, putting new ideas for future research on these diseases.
1. Introduction

Rheumatic immune diseases are chronic inflammatory diseases
caused by abnormal immune system activation. They affect joints, bones,
organs, and tissues, including rheumatoid arthritis, ankylosing spondy-
litis, and systemic lupus erythematosus.1 These diseases cause pain,
disability, and reduced quality of life to patients, and may even increase
the risk of death. Over the past few decades, the mortality rate in patients
with rheumatic immune diseases has remained high.2 Long-term
inflammation leads to damage to joint structures, and inflammation
may affect multiple organs such as the heart, lungs, and kidneys,
increasing the risk of serious complications such as cardiovascular dis-
ease and renal failure.3,4 In addition, patients with impaired immune
systems or the use of immunosuppressive drugs have an increased risk of
infection, which is also one of the important causes of death. In terms of
the current research state, rheumatologic diseases are a broad and
complex field, with different disease types and individual patient dif-
ferences making diagnosis and treatment complex. The pathogenesis
remains unclear, so more research is needed to provide safe and effective
treatments for the clinic.

Organoids are 3Dmicrostructures made from human pluripotent stem
cells (hPSC) or adult stem cells (ASC) and used for organ repair or disease
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modeling. As shown in Fig. 1, ASCs exist as undifferentiated cells in
differentiated tissues and organs, with the potential to proliferate and
differentiate. The isolated ASCs differentiate into corresponding tissue
cells after adding appropriate cytokines to construct an organoid model.
PSCs consist of embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs) that possess excellent abilities to self-renew, differentiate,
and proliferate. They produce various disease-related cell types by
mimicking the gradual differentiation scheme of organogenesis in the
body, commonly used for the construction of various organoids.5

Therefore, organoids enable functional studies of immune system-related
diseases in a microenvironment similar to in vivo, allowing in-depth
understanding of immune tissue structure and function.6 With this
technology, researchers can overcome the lack of preclinical models,
reconstruct the structure and physiology of human organs in detail, and
provide better opportunities for research on human diseases, overcoming
ethical issues in the use of stem cells derived from human embryos.
Compared with animal models, organoids can be of human origin and
can avoid the impact of species differences, making up for the short-
comings of animal models. Compared with organ models directly derived
from humans, organoids are easier to obtain and can be individually
designed for specific conditions.7,8 In addition, organoids can mimic the
functions of damaged or nonfunctional organs, improving patient quality
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dicine, Beijing, 100029, China.
).

024
i Communications Co. Ltd. This is an open access article under the CC BY-NC-ND

mailto:yuankai@bucm.edu.cn
mailto:hgr@bucm.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhip.2024.06.004&domain=pdf
www.sciencedirect.com/science/journal/27073688
www.keaipublishing.com/en/journals/journal-of-holistic-integrative-pharmacy
https://doi.org/10.1016/j.jhip.2024.06.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jhip.2024.06.004
https://doi.org/10.1016/j.jhip.2024.06.004


Fig. 1. Organoid differentiation process. hPSC, human pluripotent stem cells; ASC, adult stem cells; ESC, embryonic stem cells; iPSC, induced pluripotent stem cells.
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of life and treatment outcomes.
Based on the current difficulties in rheumatic immune disease

research and the advantages of organoid technology, organoid technol-
ogy is applied to the research of various rheumatic immune diseases,
such as mechanisms of action, new treatment options, and preclinical
research. Therefore, this article summarizes the research on organoids in
common organs where rheumatic immune diseases occur, such as the
pancreas, kidney, heart, liver, lung, joints and other parts. The article also
discusses the challenges of rheumatic immune diseases and proposes
ideas for future research.

2. Organoid research related to rheumatic immune diseases

2.1. Pancreatic organoid research

Autoimmune pancreatitis (AIP) is a special type of pancreatic in-
flammatory disease related to autoimmune factors.9 It is mostly a focal
lesion of the pancreatic head, and can also manifest as acute diffuse
pancreatitis. Inflammatory cells can infiltrate and cause fibrosis around
the pancreatic ducts. Patients with type 1 AIP have a 7%–40% chance of
developing chronic pancreatitis.10 Long-term chronic pancreatitis can
increase the risk of developing pancreatic cancer. This disease is
considered one of the risk factors for pancreatic cancer, which is why it is
important to monitor and manage chronic pancreatitis carefully.10,11

Oral prednisone used to stabilize the condition of AIP cannot completely
reverse the morphological changes of the pancreas. Therefore, it is
particularly important to develop new treatment methods for AIP. The
inhibition of protein REST impaired the construction of in vitro orga-
noids featuring pancreatic acinar-ductal metaplasia (ADM), whereas
increased REST expression facilitated this process.12 This indicates that
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REST can serve as a regulatory factor for pancreatic organoid construc-
tion and provide a new way to repair pancreatic tissue damage.

The autoimmune inflammation caused damage to pancreatic β-cells
and reduced their number. This led to gradual changes in pancreatic islet
structure, which were strongly linked to the development of type 1 dia-
betes (T1DM).13 Although inflammation of the pancreas was a key factor
in the occurrence and pathogenesis of T1DM, its occurrence had different
relationships with the course of the disease. Pancreatic inflammation and
β-cell decline might occur years before clinical symptoms of diabetes
appearred, leading to poor diagnosis or delayed patient treatment.14

Therefore, there is a need to explore its mechanism.
Diabetes research often lacks realistic disease models.15 Organoid

technology and its combination with gene editing technology promote
studying the development, function, and pathological mechanisms of
human islets. Montesano et al. cultured pancreatic islet organoids in vitro
using a three-dimensional collagen matrix.16 Wang et al.17 found that
Procr þ islet cells underwent clonal expansion and produced all four
types of endocrine islet cells during adult homeostasis. The isolated
Procr þ cells stably formed islet organoids, and their production was
verified to reverse hyperglycemia in a mouse model of
streptozotocin-induced T1D. This model investigated the relationship
between T1DM and insulitis. Patient-derived beta cells and islet orga-
noids served as information disease models that generalize pathogenesis
and phenotypes in specific patients, assessing patient-specific drug re-
sponses in screening. The combination of iPSC and CRISPR technologies
laid the foundation for autologous transplantation and minimizing im-
mune rejection, suggestive of new treatment strategies.18 At the same
time, the discovery of some biomolecules also promotes the maturation
of pancreatic islet organoids and improves their function. Vascular
endothelial growth factor A19 recruited endothelial cells and promoted
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vascularization of islet organoids; reduced LIN28B levels20 and activation
of WNT 418 promoted organoid maturation; blockade of Fibulin 3, EGFR
or CA 19-921 prevented excessive activation of EGFR in organoids. These
findings promoted the convergence of islet-like organs to natural islets
and facilitated modeling studies of insulitis and diabetes mellitus.
However, currently established islet organoids are usually not fully
mature,15 and the functionality of islet organoids needs further
improvement.

2.2. Kidney organoid research

Glomerulonephritis and systemic lupus erythematosus-related ne-
phropathy have a certain risk of causing renal failure,22 which requires
widespread attention. Renal organoids derived from human pluripotent
stem cells have been continuously used for modeling glomerular dis-
eases. They help to explore the mechanisms of progenitor cell damage in
glomerular diseases and establish methods for nephrotoxicity screening
and drug discovery in vitro systems.

Patient-derived organoids recapitulated the processes involved in
glomerular disease abnormalities and provided new insights into disease
mechanisms.23 To bridge the gap of progenitor cells having no prolifer-
ative ability, Morizane R et al.24 induced nephrons in vivo by treating
renal progenitor cells with CHIR and FGF9 to form renal vesicles. Taguchi
A et al.25 used a combination of retinoic acid, activin, BMP 4, and
moderate concentrations of CHIR to induce posterior neonatal meso-
derm, and continued to treat it with FGF 9 and low concentrations of
CHIR. They found that renal progenitor cells and tubular epithelium
could be generated. Nishinakamura R et al.26 found that renal tubular
epithelial cells in organoids matched the in vivo results of corresponding
disease bodies. The ability of renal organoids to model
glomerular-related diseases as well as tubular diseases was
demonstrated.

Applying nephrotoxic drugs to organoids causes cells to produce the
kidney injury molecule KIM1, which can be used as a model to evaluate
drug toxicity to the kidneys in real time.27 Combined with ATP/ADP
biosensor, this method was verified.28 Furthermore, to verify the trans-
port capacity of multidrug resistance MDR1 (also known as P-glycopro-
tein) and OCT2 in renal organoids, Rizki-Safitri et al.29 demonstrated that
the accumulation of fluorescent substrates in the organoid lumen was
regulated by MDR1 and OCT2 Activity-mediated, consistent with a pre-
vious study.30

However, kidney organoids were unable to construct internal capil-
lary regions and had limited ability to assess their filtration capacity,
which can be vascularized via microfluidic devices. For example, Homan
KA et al.31 cultured hPSC-derived organoids on gelatin- and fibrin-coated
chips and circulated the perfusion medium. This method effectively
increased the richness of the vasculature, and maturation of renal tubular
and glomerular cells. At the same time, when culturing kidney organoids,
attention must be paid to the culture time. Excessive culture time might
lead to loss of vascular gene expression.32

2.3. Cardiac organoid research

The immune system can cause damage to the heart, resulting in
common rheumatic immune diseases such as rheumatic heart disease and
myocarditis. Cardiac organoids can simulate the heart development
process, provide an effective pathological model for rheumatoid immune
diseases, and provide information on inflammatory responses and po-
tential therapeutic targets.33

Developmental injury modeled by localized freezing injury in cardiac
organs successfully induced extracellular matrix (ECM) accumulation in
endothelial or fibroblast-like cells.34 And iPSC-derived cardiomyocytes
could be used as cell therapy to replenish damaged myocardium.35

Compared with cardiomyocytes from healthy donors, cardiomyocytes
differentiated from iPSCs derived from patients with systemic lupus er-
ythematosus showed high apoptosis, proliferation, and fibrosis rates
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when exposed to patient serum. Anti-Ro antibodies would aggravate the
expression of genes related to metabolism, hypertrophy, and apoptosis,
which can be used as a model to study organ damage in SLE.36

Furthermore, each cardiac organoid had few cells (about 5000) and
simple construction process, it had better results than animal models for
drug screening.37 Studies combined hiPSC-derived vasculospheres with
direct differentiation of cardiomyocytes to create cardiac organoids that
displayed vascularization and chamber-like architecture. It was able to
demonstrate the process of cardiac injury and fibrosis in vivo and verified
that the drug captopril reduced fibrosis and dysfunction caused by car-
diac injury.38

In addition, the heart model can also be used to study the impact of
other factors on the heart. For example, Lewis-Israeli and others used
high concentrations of glucose and insulin to culture cardiac organoids to
study the impact of pregestational diabetes on fetal heart development.
Due to the diffusion gradient, During the formation of cardiac organoids,
cells may differentiate into tissues such as the intestine,37 pancreas, and
liver39 in cardiac organoids due to gradient diffusion. In this regard,
Cakir et al.40 experimentally found that the transcription factor hETV2
can differentiate hESCs into endothelial cells under three different con-
ditions (including the lack of growth factors for differentiation and
maintenance culture), preventing the misdirected differentiation of cells
to some extent.
2.4. Liver organoid research

Primary sclerosing cholangitis (PSC) is a liver disease caused by the
immune system attacking the bile ducts, which results in inflammation,
fibrosis, and narrowing of the bile ducts. This can lead to impaired bile
flow, liver damage, and dysfunction. Additionally, patients with PSC are
at an increased risk of developing liver cancer, as the inflammatory
environment of PSCs, including the cytokine IL-17A, can promote cancer
development.41,42 The cholangioid cells derived from the patient's iPSCs
senesced rapidly and had increased secretion of the extracellular matrix
molecule fibronectin and the inflammatory cytokine interleukin-6. An in
vitro model with disease-specific characteristics can be successfully
constructed using the iPSCs derived from patients.42

Liver organoids were used to explore the mechanisms and influencing
factors of the disease. Reich et al.43 found that reduced TGR 5 levels
caused biliary damage and promoted the progression of PSC mecha-
nisms. Yao44 et al. further verified this view and affected the transcrip-
tion of downstream nuclear factor κB by regulating the binding of TGR 5
and Pellino 3, thus affecting the inflammatory phenotype of chol-
angiocytes. Patient-derived colon epithelial organoids showed down-
regulation of LGR5 after stimulation with interferon γ, and higher
expression of OLFM4 after stimulation with interleukin IL-22. The
expression of IL-22 receptor IL22RA1 was also induced by IFNγ, indi-
cating a complex interplay between cytokines. The effect might increase
the possibility of canceration in PSC-related colitis.45 Organoid trans-
plantation was discovered to provide healthy cells needed to repair
damaged epithelium and rescue damage. For example, Sampaziotis46

found that the expression of core single-tube markers in transplanted
cells was similar to the expression level of mouse natural cholangiocytes,
without expression of other hepatic lineagemarkers. This finding informs
the principle that cholangiocyte-like organs can be used to repair human
epithelial cells. In addition, Namoto et al. jointly reported a selective
LATS kinase inhibitor that stimulates YAP signaling and accelerates liver
regeneration after hepatectomy in mice, promoting research on the
regenerative potential of liver organoids.47

Liver organoids can be used for drug screening and model validation.
Li et al.48 proposed a new method for identifying genotoxic impurities by
exposing complex samples to an in vitro nucleoside incubationmodel and
then mapping complete DNA adducts to infer the structure of potentially
genotoxic impurities. Subsequently, genotoxicity was confirmed in
humans using 3D bioprinted human liver organoids.
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2.5. Lung organoid research

Rheumatic immune diseases can affect the lungs, leading to intersti-
tial pneumonia. Hermansky-Pudlak syndrome (HPS) is a recessive auto-
somal disease that affects platelet function and causes eye and skin
albinism. Among the 11 causative genes of the disease, mutations in
HPS1, AP3B1, and HPS4 can lead to fatal HPS-associated interstitial
pneumonia (HPSIP),49 for which the only treatment is lung trans-
plantation. Idiopathic pulmonary fibrosis (IPF), the most lethal intersti-
tial lung disease (ILD), is characterized by fibrotic occlusion of alveoli
and interruption of gas exchange, leading to respiratory failure. The
treatment for this disease is also lung transplantation.50 hPSC-derived 3D
lung organoids simulate models of HPSIP and IPF to facilitate the iden-
tification of disease mechanisms and therapeutic targets. proteomic
analysis of AOS from IPSC-derived alveolar type 2 cells and primary lung
fibroblasts found mitochondrial dysfunction in HPS1 patient-specific
alveolar epithelial cells.51 Fibrotic features appeared only after deletion
of HPS 1, HPS 2, or HPS 4. They were not detectable in organoids
depleted of HPS 8, indicating the genetic phenotype associated with the
clinical incidence of HPSIP.52 Deletion of IL-11 prevented fibrosis in HPS
4-deficient organoids, suggesting it as a therapeutic target for fibrosis.52

However, hPSC-derived 3D lung organoids also have limitations. Since
this is an in vitro organoid model at the fetal development stage, it may
not fully exhibit all the characteristics of IPF and HPS.

2.6. Joint organoid research

Rheumatoid arthritis (RA) is a prevalent autoimmune disease that
affects the immune system. It is associated with long-term inflammation,
which causes invasive synovitis and damages the articular cartilage and
bone tissues.53 Fibroblast-like synovial cells (FLS) are continuously pro-
duced in the joints, which release enzymes that break down the extra-
cellular matrix and facilitate cell movement to maintain the stability of
the joint's internal environment. The pro-inflammatory cytokines, IL-1
and TNF-α, trigger the expression of other cytokines and degradative
enzymes in fibroblast-like synoviocytes.54 This leads to the destruction of
articular cartilage. The pathogenesis of RA (rheumatoid arthritis) has not
yet been fully understood. Therefore, continuous experiments and
research are still required to further explore the mechanism and treat-
ment methods. However, replicating the complex microenvironment of
joint tissue in vitro to simulate joint pathology and RA pathogenesis is
challenging.

In 2006, Hans et al.55 constructed RA-FLS-derived synovial organoids
that formed a lining layer in vitro by inducing cadherin-11. Later, Lin
et al.56 constructed synovial organoids to evaluate the potential clinical
application value of sesamol in the treatment of rheumatoid arthritis. In
2020, Rothbauer et al.57 developed a chip-based synovium 3D model
containing an embedded optical sensor array, and cultured
patient-derived synovium-like organoids on a single-chip platform. The
inflammation-induced structural changes at the 3D tissue level were
observed immediately after two days of incubation. In 2021, FSL was
embedded with a 3D synovial microglobule model in Matrigel, which
spontaneously formed a synovial structure. It successfully constructed a
scaffold-free triculture drug screening model consisting of FLS (SW982
cell line), lipopolysaccharide-activated macrophages, and primary iso-
lated knee chondrocytes.58

In addition to these models of great research significance, there have
been some discoveries about co-culture technology. Kim et al.59 con-
ducted a study where they combined chondrocytes with synoviocytes,
resulting in an increase in the expression of chondrogenic markers in the
micro mass. These markers include type II collagen, proteoglycans, and
Sox9 transcription factors, leading to a reduction in IL-6 and IL-8 levels in
the co-culture model. Osteochondrocyte progenitor cell microspheres
were stimulated with TGFβ for 3 weeks and then mixed with osteogenic
medium. This method produced hybrid microspheres with bone and
cartilage structures in the periphery, recruited hematopoietic stem cells,
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and reconstructed hematopoiesis.60

Extracellular vesicles that were derived from induced pluripotent
stem cells (iPSCs) have been found to reduce the expression of matrix-
degrading enzymes, such as matrix metalloproteinases and IL-6. They
have also been found to lessen chondrocyte death, which is mediated by
IL-1β, and regulate macrophage polarization. As a result, they are able to
rescue damaged chondrocytes in the inflammatory microenvironment.61

iPSCs express pluripotency markers like OCT4, SOX2, and NANOG. Once
they differentiate into mesenchymal cells (MSCs), they express typical
MSC markers, such as CD29, CD44, CD90, CD105, and HLA-ABC. This
makes them a potential source of chondrocytes.62 Compared with exo-
somes secreted by synovial MSCs, exosomes secreted by iPSC-derived
MSCs stimulated chondrocyte migration and proliferation with better
therapeutic effect.63

In 2014, Willard et al.64 successfully constructed a mouse
iPSC-derived cartilage model, used IL-1α to simulate the inflammatory
environment, and screened the therapeutic drugs. In addition to some
common effects, only the NF-κB inhibitor SC-514 effectively reduced
IL-1α-induced cartilage loss, suggesting the usability of the
iPSC-constructed model for clinical drug screening.

Research on cartilage organoids continues to increase, studying stable
models and new possible mechanisms for treatment. During the process
of chondrogenesis, TRPV4 was both a marker of chondrogenesis and a
regulator of chondrogenesis. The expression of Trpv4 in iPSCs increased
significantly, along with the chondrogenic gene markers Sox9, Acan, and
Col2a1.65 iPSCs were placed in a nutrient medium containing BMP2,
TGF-β1, and GDF5, which was beneficial to the purification of chon-
drocytes and the formation of scaffold-free hyaline cartilage.66,67 Studies
showed68 that if the FN1 gene was mutated, the combination of fibro-
nectin and type II collagen would be reduced, which would lead to a
weakened chondrogenesis ability and affect the construction of cartilage
organoids. Differentiation of iPSC-derived cartilage organs after trans-
plantation led expression of PRG4, which was essential for joint lubri-
cation.69 ST2825 (a highly specific inhibitor of MyD88 dimerization)
reduced fibroblast proliferation by arresting cells in the G0/G1 phase of
the cell cycle. At the same time, it downregulated genes encoding me-
diators of pain, inflammation, and joint catabolism.70

An increasing number of drug-related studies are promoting the
development of cartilage organoids. A novel RGD–SF–DNA hydrogel
microsphere was reported to induce chondrogenesis through the
integrin-mediated adhesion pathway and glycosaminoglycan biosyn-
thesis.71 The combination of Oroxylin A and amorphous calcium car-
bonate ACC synergistically inhibits osteoclast formation and activity,
demonstrating therapeutic promise for cartilage involvement in rheu-
matic immune diseases.72

The above findings can provide a theoretical basis and reference for
the construction of cartilage organoids and the treatment of bone
involvement in rheumatic immune diseases.

2.7. Skin organoid research

There are several immune diseases related to rheumatism, such as
systemic lupus erythematosus, systemic sclerosis, and psoriatic arthritis,
which can cause skin lesions resulting in symptoms like rashes and ery-
thema. Skin organoid technology is useful for creating in vitro skin
models and studying the mechanisms behind skin homeostasis and skin
repair at a molecular level. Studies showed73 that genome editing of
mutations on iPSCs through the CRISPR/Cas9 system, edited the mutated
OASL 202Q into wild-type 202R or edited the wild-type OASL 202R into
mutated 202Q. This led to reduced or enhanced type 1 IFN secretion by
dendritic cells, facilitating the study of the pathogenesis of SLE. Psoriatic
skin studies found74 that Glut1 deficiency impaired keratinocyte prolif-
eration and migration. Glut1 inhibition reduced the expression of
pathology-related genes in human psoriatic skin organs.

Skin organoids are used to investigate new targets and methods for
the treatment of rheumatic immune diseases. Induced pluripotent cells
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from patients' fibroblasts differentiated into hematopoietic and mesen-
chymal cells in vitro, without transgenes. Expression of collagen, integrin
α, and β in systemic sclerosis fibroblasts Up-regulated, while collagen and
integrin β levels were normal in fibroblasts differentiated from iPSCs
derived from the patients.75 This demonstrates that it is possible to
distinguish between normal tissue cells and integrated iPSC cells, which
can be used as a potential source for stem cell therapy in clinical settings.
iPSC-derived skin organoids can also be used to create disease models,
which can help to confirm the efficacy of drugs. For example, it has been
discovered that estrogen receptor modulator drugs can treat fibrosis in
systemic sclerosis disease models.76
2.8. Vascular organoid research

Vascular disease is the basis and common ground of rheumatic im-
mune diseases and cardiovascular diseases. Especially, systemic lupus
erythematosus and systemic sclerosis are rheumatic immune diseases
that can easily cause vascular dysfunction. Systemic inflammation can
lead to dyslipidemia and dysfunction. These lesions promote the pro-
atherosclerotic environment and increase the risk of cardiovascular dis-
ease, and vasculopathy is the key cause of cardiovascular disease.77,78

Therefore, preventing vasculopathy in patients with rheumatoid arthritis
is crucial for preventing disease progression and cardiovascular disease.
The establishment of vascular organoids and vascularization of multiple
organoids will enable more in-depth studies of vascular inflammation in
rheumatic diseases.

Organoids such as kidneys, pancreas, heart, and lungs are affected by
vascularization. Dense blood vessels increase the complexity of their
models and help them simulate the functions of the corresponding or-
gans. Regarding the maturation and vascularization of renal organoids,
studies found31 that under static conditions, the area of blood vessels
generated by renal organoids in a high-concentration FSS environment
was five times greater than that generated by lower concentrations of
FSS. It showed that FSS is a key factor in promoting the vascularization of
renal organoids in vitro. On the contrary, culturing organoids under
dynamic conditions in vitro has been found to support the maturation of
tubular epithelial cells in renal organoids. To achieve the optimal effect,
it is important to consider the aforementioned factors comprehensively.
In the study of cardiac organoids,79 hPSC-derived cardiomyocytes, ven-
tricular cardiac fibroblasts, and human umbilical vein endothelial cells
were cultured at the cell ratio of the naturally developing heart (5:4:1)
while maintaining appropriate biological and physical parameters. They
formed a microvascular network that exhibited contractile and electro-
physiological properties when mature. However, two strategies are
usually used for the vascularization of most organoids. One is to
co-culture hPSC-derived target cells with endothelial vascular cells and
MSC to promote the formation of tissue and microtubule networks in
vitro;80 the other is to transplant organoids into the animal body to truly
simulate the in vivo microenvironment to promote the differentiation
and maturation of organoids.81,82

The microphysiological environment in which vascular organoids
form is used for pharmacological studies, including drug distribution and
toxicity modeling. Many studies share a common goal of conducting
pharmacological research and standardizing model vascular organoids.48

Microfluidic models were used to assess the ability of MSCs to induce
vasculogenesis and vasculogenesis, potentially predicting their ability to
contribute to wound healing and revascularization in vivo.83 Models that
collectively include lymphatic vessels, vasculature, and adipocytes can be
used to examine the subcutaneous bioavailability of drugs.84 In addition,
multi-organ combined models can be used to simulate vascular transport
between organs.85 These models are used in pharmacokinetic and
pharmacodynamic studies to facilitate the identification of biomarkers
similar to cardiotoxicity.
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3. Limitations and challenges

At present, there are still few specific examples of organoids being
applied to rheumatic and immunological disease research, and the
application of organoids has certain limitations.

3.1. Immaturity

Although organoids can replicate the basic structure and function of
some organs, they often cannot fully mimic the complexity of an entire
organ, which is similar to the development of fetal organs in the first or
second trimester of pregnancy and cannot fully simulate the human
microenvironment. For example, the levels of solute carriers OAT and
OCT and related pathways in adult kidneys are significantly different
from those in renal organoids.86 Organoids cultured in vitro are prone to
lack of vascularization. These vascular networks are abundant in native
organs but are sparse in vitro derived products, such as kidneys, livers,
and hearts.15,27,87 Without blood vessels, organoids are limited in size
and function because oxygen and nutrients cannot be efficiently trans-
ported inside the organoids, and metabolic waste cannot be removed,
preventing them from achieving similar size and functional complexity to
actual organs.

3.2. Batch-to-batch reproducibility and standardization

Differentiation of organoids is subject to batch-to-batch variability,
which reduces reproducibility. For example, residual undifferentiated
cells in culture, clonal differences in pluripotent stem cells, and vari-
ability in experimental reagents will all affect organoid differentiation
results.39,88 Depending on the cells' ability to self-organize, different
batches of organoids can vary significantly in size, shape, and function.
Therefore, developing uniform preparation and evaluation standards is a
major challenge for applications such as drug testing and disease
modeling.

3.3. Security issues

Although the use of patient-derived iPSC-derived organoids can avoid
the problem of species translation in the clinic, there is the possibility of
tumorigenesis. The probability of tumor formation from iPSC derivatives
is affected by many factors, such as the tissue source of iPSCs, the
assessment of iPSC residuals after construction,84 and their use for
reprogramming, differentiation, or transplantation methods.85 At the
same time, it is important to ensure the safety of culture components and
prevent contamination of the cell microenvironment.

3.4. Cost issues

The culture conditions of organoids are complex. Maintaining the
growth and function of organoids requires precise control of the envi-
ronment, including specific growth factors, oxygen and nutrient balance.
The high experimental cost may limit its popularity in scientific research
and clinical applications. For example, the use of organoids for predictive
evaluation of compounds in clinical and pharmacological laboratory
environments is high cost and low throughput. In response to this situ-
ation, Shrestha et al. developed a microarray 3D bioprinting method
based on droplet-printing technology, which reduces costs and increases
evaluation throughput to a certain extent.89 This is conducive to pro-
moting the research progress of organoids.

4. Conclusion

Various types of organoids provide opportunities to study the
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development mechanisms and potential treatments of different types of
human diseases. Their application in rheumatic immune diseases helps to
establish safe and effective in vitro models and gain an in-depth under-
standing of immune tissue structures. This method promotes the exca-
vation of pathogenesis, the construction of in vivo drug response models,
and the discovery of clinically feasible biomarkers.90 Cultivate organoids
from individuals for specific patient groups, establish specialized disease
models based on patient characteristics, and develop a set of
individual-specific precision medicine treatments, which will promote
the research and treatment of a variety of rheumatic and immunological
diseases. Despite the current limitations and challenges in the construc-
tion of organoids as well as in their clinical application, organoid tech-
nology is constantly improving and the challenges are being
accomplished. For example, microfluidic device perfusion was performed
by vascularization of organoids, and contamination due to uncertainty in
culture composition was addressed by considering the culture of
clinical-grade collagen.91
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