EXPERIMENTAL RESEARCH

Chemotaxonomic and Pharmacological properties on *Dendrobium chrysanthum* Lindl.

ZHAI Denghui^{1,#}, LIN Yanduan^{1,#}, NI Jun², LIN Weilong², CAI Jinyan^{1,2,*}, ZHAO Lin^{3*} ¹Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; ²School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; ³School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China

[Abstract] Many species of *Dendrobium* have been commonly used in traditional Chinese medicine. The aim of this study was to provide a critical and comprehensive evaluation of the phytochemistry and pharmacological properties of *Dendrobium chrysanthum* Lindl., with the hope to provide meaningful guidelines for future investigations. In our study, 105 compounds were tentatively identified by UPLC/Q-TOF-MS/MS comprehensively, novel polyphenylpropanoids were detected and characterized from the genus Dendrobium. 63 compounds were obtained by repeatedly chromatographs and recrystallization. Among them, 27 compounds were firstly reported from the species *D. chrysanthum*. Some valuable compounds like pseudo-spirostanols and novel polyphenylpropanoids were found and identified in *D. chrysanthum* for the first time, which might constitute the key characteristics and chemotaxonomic significance that distinguish *D. chrysanthum* from other Dendrobium species. The pharmacological activities of *D. chrysanthum* were summarized including the anti-inflammatory, antioxidant, anti-tumor and hypoglycemic activities of the extract and purified constituents.

[Key words] phytochemistry; pharmacological properties; chemotaxonomy; *Dendrobium chrysanthum* Lindl.

1 Introduction

The genus *Dendrobium*, which is widely distributed in tropical and subtropical regions in the world, comprises about 1 500 species. There

are 76 species grow in China^[1-2]. Many species of *Dendrobium* have been commonly used in folk medicine for the treatment of cataracts, hypoglycemia, antibacterial, anti-inflammatory, and diabetes^[3].

Dendrobium chrysanthum Lindl., a perennial epiphytic herb belongs to the family Orchidaceae, is widely distributed in South Asia and parts of Southeast Asia like Guangxi, Guizhou, Yunnan and southeastern Tibet, growing on tree trunks or damp rocks in mountain forests or valleys at an altitude of 700-2 500 meters above sea level. Previous phytochemical investigations of *D. chrysanthum*

[[]Research Funding] This work was supported by the Special Innovation Project of Guangdong University (No. 2019KTSCX073) and Guangdong Natural Science Foundation (No. 2021A1515011510).

[#]These authors contribute equally to this work.

[[]***Corresponding author**] E-mail: caijinyan@gdpu.edu.cn, zhaolin@gdpu.edu.cn

These authors have no conflict of interest to declare.

led to the identification of diverse types of chemical constituents, including bibenzyls^[4-6], phenanthrenes^[6-8], anthraquinones^[9], alkaloids^[10], lignans^[11], fluorenones and steroids^[12-13].

In this study, we aim to provide a critical and comprehensive evaluation of the phytochemistry and pharmacological properties of *D. chrysanthum*, with the hope to provide a scientific basis for further development of *Dendrobium* and explore its effective components.

2 Phytochemistry of D. chrysanthum

2.1 Preparation of the D. chrysanthum

The fresh stems of *D. chrysanthum* were gathered from Wenshan Zhuang-Miao Autonomous Prefecture, Yunnan Province in 2013, and identified by Prof. Tie Zhang, Yunnan Wenshan college. A voucher specimen (SH-201307) has been deposited in the herbarium School of pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.

2.2 Analysis of the crude extract of *D. chrysanthum*

The dried stems of *D. chrysanthum* (7.5 Kg) was cut into pieces, refluxed and extracted with 95% ethanol for 4 times, 3 hours each time, filtered and combined with filtrate. 550 g ethanol extract was recovered, and 1.0 g ethanol extract was dissolved by chromatographic methanol for UPLC/Q-TOF-MS/MS. The mobile phase A was deionized water while the mobile phase B was methanol, the flow rate was 1.0 mL/min, and the column temperature was 30 °C, the injection volume was 20 µL. The mobile phase was consisted of deionized water (A) and methanol (B) and the elution condition was as follow: 0~30 min, 80%A; 30~50 min, 20%A; 50~70 min, 90%A. Mass spectrometry conditions: ESI source; data acquisition in positive ion mode; ion spray voltage: 1 500 V; ion source gas: 150 pis; ion source temperature: 550 °C; collision voltage:

8 pis; mass scan range: m/z 100-1 200. Sample (5 µL) were subjected to HPLC-Q-TOF-MS analysis. The chemical constituents of M. speciosa were analyzed on the basis of MSⁿ results. The CAS, Molecular formula, Molecular weight and MOL file were collected by Chemspider and Scifinder. With the help of the Formula Finder function in Peakview software, the accurate masscharge ratio (m/z) of compounds was obtained by TOF-MS first-order mass spectrometry. The MOL file, which is consistent with the deduced formula, is then imported into the Peakview software to verify the accuracy of the deductive compound by matching the information of the secondary fragments obtained at the lower end of the time.And 105 compounds was determined by combining the retention time, molecular ion peaks and structural fragments (Table 1), including 29 phenylpropanoids that have been reported^[14].

2.3 Extraction and isolation of the extract of *D. chrysanthum*

Dry stems of D. chrysanthum were refluxed with 95% ethanol and the extract was suspended in water and then extracted successively with petroleum ether (PE), chloroform (CHCl₃), ethyl acetate (EtOAc) and n-butyl alcohol (n-BuOH). The CHCl₃, EtOAc and n-BuOH fractions were subjected to silica gel (200-300 mesh) column chromatography (CC) by petroleum ether/ dichloromethane (PE/CH₂Cl₂) (v/v, 100 : 1-1 : 1) followed by dichloromethane/methanol (CH₂Cl₂/ MeOH) (v/v, 100: 1-1: 1) to yield fractions. Then the fractions were repeatedly chromatographed over silica gel CC, sephadex LH-20 CC, and preparative thin layer chromatography (PTLC) for the next fractions. Compounds were obtained by HPLC method (Senshu pak PEGASIL ODS Al, 10 A 250 mm, MeOH : H₂O (70 : 30), flow rate 4 ml/min A1; UV detector at 254 nm) and repeatedly recrystallization. The main chemical compositions from D. chrysanthum were identified

1 5.07 $C_{\mu}H_{\mu}O_{\mu}^{2}$ 29.123 1 cyclop-hydroxyphenylacrylic acid-p- hydroxyphenylacrylic acid-p- hydroxyphenylacrylic acid-di-p- hydroxyphenylacrylic acid-di-p- hydroxyphenylacrylic acid phenylpropanoid 3 8.97 C,HLO, ⁺ 163.038 4 -3.6 p -hydroxyphenylacrylic acid phenylpropanoid 4 7.38 C,HLO, ⁺ 190.034 4 2.8 callicic acid phenylpropanoid 6 8.30 C,HLO, ⁺ 197.034 4 3.0 p -hydroxyphenylpropionic acid-hexaglycoside phenylpropanoid 7 8.32 C,HLO, ⁺ 151.039 8 p-hydroxyphenylpropionic acid-hexaglycoside phenylpropanoid 9 8.64 C,HLO, ⁺ 151.039 8 Methoxybenzylacrylbraylpropionic acid-hexaglycoside phenylpropanoid 10 8.99 C,HLO, ⁺ 151.039 8 Methoxybenzylacrylbraylpropionic acid-hexaglycoside phenylpropanoid 11 9.11 C,HLO, ⁺ 385.206 9 cyclodi-p-hydroxyphenylpropionic acid-hexaglycoside phenylpropanoid 12 10.14 C,HLO, ⁺ 311.113 2 2.2 hexaglycoxide phenylpropionia phenylpropanoid	No.	TR/min	Formula	[M-H]-	Error/ppm	Name	Classification
hydroxyphenylpropionate38.97 $C_{4}H_{0}$,163.038 4 -2.8 endfci acidphenylpropanoid58.22 $C_{4}H_{0}$,325.090 8 -3.2 $p-hydroxyphenylpropionic acid-hexaglycosidephenylpropanoid68.30C_{2}H_{1}O_{1}327.108 43.0p-hydroxyphenylpropionic acid-hexaglycosidephenylpropanoid78.32C_{2}H_{1}O_{1}115.055 12.9p-hydroxyphenylpropionic acid-hexaglycosidephenylpropanoid98.64C_{4}H_{0}O_{1}115.035 8Methoxybenzoic acidphenylpropanoid108.90C_{4}H_{0}O_{1}116.055 12.9p-hydroxyphenylpropionic acid-hexaglycosidephenylpropanoid119.11C_{4}H_{0}O_{1}164.044 72.5phenylatinaphenylpropanoid1210.14C_{4}H_{2}O_{1}852.06 9ecyclo-hydroxyphenylpropionia caid-hr:p-phenylpropanoid1310.87C_{4}H_{0}O_{1}311.113 22.2hexaglycoside phenylpropioniaphenylpropanoid1413.76C_{4}H_{2}O_{1}475.285d-p-hydroxyphenylpropionia caid-hr:p-phenylpropanoid1518.28C_{4}H_{2}O_{1}475.285d-p-hydroxyphenylpropionia caid-hr:p-phenylpropanoid168.73C_{2}H_{2}O_{1}455.246 8d-p-hydroxyphenylpropionia caid-p-phenylpropanoid1722.33C_{1}H_{2}O_{1}455.246 8d-p-hydroxyphenylpropionia caid-p-phenylpropanoid1824.55C_{1}$	1	5.07	$C_{18}H_{13}O_4^{*}$	293.123 1			phenylpropanoid
4 7.38 $C_3H_3O_s^4$ 179.034 4 2.8 calleic acid phenylpropanoid 5 8.22 $C_1H_3O_s^4$ 327.108 4 3.0 p -hydroxyphenylacrylie acid-hexaglycoside phenylpropanoid 6 8.30 $C_1H_3O_s^4$ 325.109 8 -3.2 p -hydroxyphenylacrylie acid-hexaglycoside phenylpropanoid 7 8.32 $C_2H_3O_s^4$ 473.162 1 phenylpropanoid phenylpropanoid 9 8.64 $C_4H_0O_s^4$ 165.055 1 2.9 p -hydroxyphenylpropionic acid phenylpropanoid 10 8.90 $C_4H_0O_s^4$ 147.0440 -0.4 counsdin phenylpropanoid 11 9.11 $C_4H_0O_s^4$ 164.0447 2.5 phenylpropionia phenylpropanoid 13 10.87 $C_1H_0O_s^4$ 311.113 2 2.2 hexaglycoside henylpropioniate phenylpropanoid 14 13.76 $C_2H_5O_s^4$ 475.288 5 $d_{12}p$ -hydroxyphenylpropioniate phenylpropanoid 15 18.28 $C_{4H_5O_s^4$ 475.288 5 $d_{12}p$ -hyd	2	5.35	$C_{36}H_{27}O_8^{\ *}$	587.263 3			phenylpropanoid
5 8.22 $C_{11}H_{0}O_{1}^{*}$ 327.108 4 3.0 <i>p</i> -hydroxyphenylaropionic acid-hexaglycoside phenylpropanoid 6 8.30 $C_{11}H_{0}O_{1}^{*}$ 325.090 8 -3.2 <i>p</i> -hydroxyphenylaropionic acid-hexaglycoside phenylpropanoid 7 8.32 $C_{11}H_{0}O_{1}^{*}$ 165.055 1 2.9 <i>p</i> -hydroxyphenylpropionic acid phenylpropanoid 9 8.64 $C_{11}H_{0}O_{1}^{*}$ 165.055 1 2.9 <i>p</i> -hydroxyphenylpropionic acid phenylpropanoid 10 8.90 $C_{4}H_{0}O_{1}^{*}$ 151.039 8 Methoxybenzoic acid phenylpropanoid 12 10.14 $C_{2}H_{0}O_{1}^{*}$ 147.044 0 -0.4 counadin phenylpropanoid 13 10.87 $C_{11}H_{0}O_{1}^{*}$ 311.113 2 2.2 hexaglycoside phenylpropionia acid-hexaglycoside phenylpropanoid 14 13.76 $C_{2}H_{0}O_{1}^{*}$ 439.117 7 0.2 eyclodi-p-hydroxyphenylpropionia acid-hexaglycoside phenylpropanoid 15 18.828 $C_{2}H_{0}O_{1}^{*}$ 475.288 5 <i>d</i> -p-hydroxyphenylpropionia acid-hexaglycoside phenylpropanoid 17	3	8.97	$C_9H_7O_3^{*}$	163.038 4	-3.6	<i>p</i> -hydroxyphenylacrylic acid	phenylpropanoid
6 8.30 $C_{11H_{10}O_{1}}^{*}$ 325.090 8 -3.2 <i>p</i> -hydroxyphenylacrylic acid-hexaglycoside phenylpropanoid 7 8.32 $C_{11H_{10}O_{1}}^{*}$ 475.162 1 phenylpropionic acid-hexaglycoside phenylpropanoid 8 8.41 $C_{11H_{10}O_{1}}^{*}$ 165.055 1 2.9 <i>p</i> -hydroxyphenylpropionic acid phenylpropanoid 9 8.64 $C_{11H_{10}O_{1}^{*}$ 151.039 8 Methoxyberzois acid phenylpropanoid 10 8.90 $C_{11H_{10}O_{1}^{*}$ 158.020 9 eyclop-hydroxyphenylpropionic acid- <i>tri-p</i> -phenylpropanoid 12 10.14 $C_{11H_{10}O_{1}^{*}$ 585.206 9 eyclop-hydroxyphenylpropionita phenylpropanoid 14 13.76 $C_{11H_{10}O_{1}^{*}$ 475.288 5 <i>d-p</i> -hydroxyphenylpropionita phenylpropanoid 15 18.28 $C_{21H_{10}O_{1}^{*}$ 475.288 5 <i>d-p</i> -hydroxyphenylpropionic acid- <i>p</i> -phenylpropanoid 16 18.73 $C_{21H_{10}O_{1}^{*}$ 455.242 8 <i>tri-p</i> -hydroxyphenylpropionic acid- <i>p</i> -phenylpropanoid 17 22.33 $C_{21H_{10}O_{1}^{*}$ 455.242 8	4	7.38	$C_9H_7O_4^{*}$	179.034 4	2.8	caffeic acid	phenylpropanoid
7 8.32 $C_{11}H_{20}O_{1}^{*}$ 473.162 1 phenylpropionic acid-hexaglycoside phenylpropanoid 8 8.41 $C_{41}P_{0}$, 165.055 1 2.9 p -hydroxyphenylpropionic acid phenylpropanoid 9 8.64 $C_{41}P_{0}$, 115.039 8 Methoxybenzoic acid phenylpropanoid 10 8.90 $C_{41}P_{0}$, 147.044 -0.4 cournadin phenylpropanoid 11 9.11 $C_{41}P_{0}O_{1}^{*}$ 164.044 2.5 phenylarpopionic acid- $tri-p$ - phenylpropanoid 12 10.14 $C_{34}P_{0}O_{1}^{*}$ 311.113 2.2 hexaglycoside phenylpropionic acid- $tri-p$ - phenylpropanoid 13 10.87 $C_{11}P_{0}O_{1}^{*}$ 439.117 0.2 eyclodi- p -hydroxyphenylpropionia acid- p - phenylpropanoid 14 13.76 $C_{21}P_{10}O_{1}^{*}$ 475.288 5 di- p -hydroxyphenylpropionia acid- p - phenylpropanoid 17 22.33 $C_{21}P_{10}O_{1}^{*}$ 475.242 8 ri- p -hydroxyphenyl acrylia caid- p - phenylpropanoid 18 24.55 $C_{11}P_{10}O_{1}^{*}$ 311.223 3 p -hydroxyphenylpropionate phenylpropanoid 19 <td>5</td> <td>8.22</td> <td>$C_{15}H_{19}O_8^{*}$</td> <td>327.108 4</td> <td>3.0</td> <td>p-hydroxyphenylpropionic acid-hexaglycoside</td> <td>phenylpropanoid</td>	5	8.22	$C_{15}H_{19}O_8^{*}$	327.108 4	3.0	p-hydroxyphenylpropionic acid-hexaglycoside	phenylpropanoid
8 8.41 CH ₀ , ⁵ 165.055 2.9 <i>p</i> -hydroxyphenylpropionic acid phenylpropanoid 9 8.64 C _H O ₂ * 151.039 Methoxybenzoic acid phenylpropanoid 10 8.90 C _H O ₂ * 147.044 -0.4 coumatin phenylpropanoid 11 9.11 C _H Q ₀ * 164.044 2.5 phenylpropinic acid- <i>tri-p</i> - phenylpropanoid 12 10.14 C _w H ₂ O _s * 585.206 9 cyclop-lydroxyphenylpropionic acid- <i>tri-p</i> - phenylpropanoid 13 10.87 C _W H ₀ O _s * 311.113 2 2.2 hexaglycoside phenylpropionic acid- <i>tri-p</i> - phenylpropanoid 14 13.7.6 C _W H ₀ O _s * 439.117 7 0.2 cyclop-lydroxyphenylacylacylic acid- <i>p</i> - phenylpropanoid 15 18.28 C _W H ₀ O _s * 475.288 5 <i>di-p</i> -hydroxyphenylpropionic acid-hexaglycoside phenylpropanoid 17 22.33 C ₂ H ₀ O _s * 475.242 8 <i>ri-p</i> -hydroxyphenylacylacylic acid- <i>p</i> - phenylpropanoid 18 24.55 C _W H ₀ O _s * 309.206 3 <i>di-p</i> -hydroxyphenylacylic acid- <i>p</i> - phenylpropanoid 19 26.	6	8.30	$C_{15}H_{17}O_8^{\ *}$	325.090 8	-3.2	p-hydroxyphenylacrylic acid-hexaglycoside	phenylpropanoid
9 8.64 C ₄ H ₁ O ₁ ' 151.039 8 Methoxybenzoic acid phenylpropanoid 10 8.90 C ₄ H ₀ O ₁ ' 147.044 0 -0.4 cournadin phenylpropanoid 11 9.11 C ₄ H ₀ O ₂ ' 164.044 7 2.5 phenylpropinoic acid-tri-p- phenylpropanoid 12 10.14 C ₄ H ₀ O ₂ ' 585.206 9 eyclop-hydroxyphenylpropionic acid-tri-p- phenylpropanoid 13 10.87 C ₄ H ₀ O ₄ ' 39.117 7 0.2 eyclodi-p-hydroxyphenylacrylica phenylpropanoid 14 13.76 C ₂ H ₀ O ₆ ' 439.117 7 0.2 eyclodi-p-hydroxyphenylacrylica phenylpropanoid 15 18.28 C ₂₄ H ₂ O ₁₀ ' 475.288 5 di-p-hydroxyphenylacrylica ecid-hexaglycoside phenylpropanoid 16 18.73 C ₂₄ H ₂ O ₁₀ ' 455.242 8 tri-p-hydroxyphenylacrylica phenylpropanoid 19 26.24 C ₈₄ H ₂ O ₂ ' 603.164 8 -0.3 tri-p-hydroxyphenylacrylica eid-p- 20 27.46 C ₁₈ H ₁₀ O ₂ ' 589.303 6 eyclop-hydroxyphenylpropi	7	8.32	$C_{21}H_{29}O_{12}^{*}$	473.162 1		phenylpropionic acid-hexose-hexaglycoside	phenylpropanoid
10 8.90 $C_xH_xO_x^*$ 147.044 0 -0.4 cournadin phenylpropanoid 11 9.11 $C_xH_xO_x^*$ 164.044 7 2.5 phenylatine phenylpropanoid 12 10.14 $C_xH_xO_x^*$ 585.206 9 evclop-hydroxyphenylpropionic acid-tri-p hydroxyphenylpropionite phenylpropanoid 13 10.87 $C_{1y}H_yO_x^*$ 311.113 2 2.2 hexaglycoside phenylpropionite phenylpropanoid 14 13.76 $C_{2y}H_yO_x^*$ 475.288 5 $di-p-hydroxyphenylpropionita acid-hexaglycoside phenylpropanoid 16 18.73 C_{x}H_xO_x^* 475.288 5 di-p-hydroxyphenylpropionita acid-p-hydroxyphenylpropionita acid-p-phenylpropanoid phenylpropanoid 19 26.24 C_xH_xO_x^* 603.164 8 -0.3 ti-p-hydroxyphenylpropionia acid-p-hydroxyphenylpropionate phenylpropanoid 21 29.25 C_xH_xO_x^* 605.404 5 di-p-hydroxyphenylpropionia acid-p-hydroxyphenylpropionate phenylpropanoid 22 29.84 C_yH_yO_x^* 589.303 6 eyclop-hydroxyphenylpropionate phenylpropanoid 23 31.26 C_xH_yO_x^* 589.303 6 eyclop-$	8	8.41	$C_9H_9O_3^{*}$	165.055 1	2.9	<i>p</i> -hydroxyphenylpropionic acid	phenylpropanoid
11 9.11 $C_y H_y N_0'_z$ 164.044 7 2.5 phenylalanine phenylpropanoid 12 10.14 $C_y H_y O_y'_z$ 585.206 9 eyclop-hydroxyphenyl propionic acid- <i>tri-p</i> - hydroxyphenyl acrylate phenylpropanoid 13 10.87 $C_y H_y O_y'_z$ 311.113 2 2.2 h-kazglycoside phenylpropionate phenylpropanoid 14 13.76 $C_{21} H_y O_y'_z$ 439.117 7 0.2 cyclodi- <i>p</i> -hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylpropionate phenylpropanoid 15 18.28 $C_{24} H_{22} O_y'_z$ 475.288 5 <i>di-p</i> -hydroxyphenylpropionic acid- <i>p</i> - hydroxyphenylpropionic acid- <i>p</i> - phenylpropanoid phenylpropanoid 16 18.73 $C_{24} H_{20} O_y'_z$ 455.242 8 <i>tri-p</i> -hydroxyphenylpropionic acid- <i>p</i> - phenylpropanoid phenylpropanoid 19 26.24 $C_{34} H_{20} O_y'_z$ 603.164 8 -0.3 <i>tri-p</i> -hydroxyphenylpropionate phenylpropanoid 21 29.25 $C_{34} H_{30} O_y'_z$ 89.303 6 cyclop-hydroxyphenylpropionate phenylpropanoid 22 29.84 $C_{34} H_{30} O_y'_z$ 589.303 6 cyclop-hydroxyphenylpropionate phenylpropanoid 23 31.26 <	9	8.64	$C_8 H_7 O_3^{*}$	151.039 8		Methoxybenzoic acid	phenylpropanoid
12 10.14 $C_{u}H_{20}O_{u}^{*}$ 585.206 9 eyclop-hydroxyphenylarcylate phenylpropanoid 13 10.87 $C_{11}H_{10}O_{v}^{*}$ 311.113 2 2.2 hexaglycoside phenylpropionate phenylpropanoid 14 13.76 $C_{21}H_{10}O_{v}^{*}$ 439.117 7 0.2 eyclod:-p-hydroxyphenylarcylic acid-p- phydroxyphenylpropionic acid-hexaglycoside phenylpropanoid 15 18.28 $C_{21}H_{10}O_{v}^{*}$ 475.288 5 di-p-hydroxyphenylpropionic acid-hexaglycoside phenylpropanoid 16 18.73 $C_{21}H_{10}O_{v}^{*}$ 475.288 5 di-p-hydroxyphenylarcylic acid-hexaglycoside phenylpropanoid 17 22.33 $C_{21}H_{10}O_{v}^{*}$ 455.242 8 tti-p-hydroxyphenylarcylic acid-hexaglycoside phenylpropanoid 18 24.55 $C_{10}H_{11}O_{v}^{*}$ 309.206 3 di-p-hydroxyphenylarcylic acid-p- hydroxyphenylpropionate phenylpropanoid 20 27.46 $C_{10}H_{10}O_{v}^{*}$ 311.223 3 p-hydroxyphenylpropionate phenylpropanoid hydroxyphenylpropionate phenylpropanoid 21 29.25 $C_{00}H_{20}O_{v}^{*}$ 589.303 6 ecyclop-hydroxyphenylpropionate phenylpropanoid 23	10	8.90	$C_9H_6O_2^{*}$	147.044 0	-0.4	coumadin	phenylpropanoid
hydroxyphenyl acrylate1310.87 $C_{ip}H_{ip}O_{i}^{*}$ 311.1132.2hexaglycoside phenylpropionatephenylpropanoid1413.76 $C_{ip}H_{ip}O_{i}^{*}$ 439.1170.2cyclodi-p-hydroxyphenylacrylia cidi-p hydroxyphenylpropionia cidi-p- hydroxyphenylpropionia cidi-p- phenylpropanoidphenylpropanoid1518.28 $C_{2i}H_{2i}O_{in}^{*}$ 475.288.5 $di \cdot p-hydroxyphenylpropionia cidi-pphydroxyphenylacrylia cidi-p-hydroxyphenylacrylia cidi-p-phenylpropanoidphenylpropanoid1618.73C_{2i}H_{2i}O_{in}^{*}455.242.8ri \cdot p-hydroxyphenyl acrylatephenylpropanoid1824.55C_{in}H_{10}O_{i}^{*}309.206.3di \cdot p-hydroxyphenyl acrylatephenylpropanoid1926.24C_{in}H_{2i}O_{i}^{*}603.164.8-0.3ti \cdot p-hydroxyphenylacrylic acid-p-hydroxyphenylpropionatephenylpropanoid2027.46C_{in}H_{2i}O_{i}^{*}605.404.5di \cdot p-hydroxyphenylacrylic acid-p-hydroxyphenylpropionatephenylpropanoid2129.25C_{2i}H_{2i}O_{i}^{*}589.303.6eyclop-hydroxyphenylpropionatephenylpropanoid2331.26C_{in}H_{10}O_{i}^{*}255.229eyclop-hydroxyphenylpropionatephenylpropanoid2431.83C_{2i}H_{10}O_{i}^{*}591.313.6eycloteria-p-hydroxyphenylpropionatephenylpropanoid2531.83C_{2i}H_{10}O_{i}^{*}607.248.4di \cdot p-hydroxyphenylpropionatephenylpropanoid2633.74C_{2i}H_{10}O_{i}^{*}607.248.4<$	11	9.11	$C_9H_{10}NO_2^{*}$	164.044 7	2.5	phenylalanine	phenylpropanoid
14 13.76 $C_{27}H_{19}O_6^{+}$ 439.117 7 0.2 cyclodi-p-hydroxyphenylacrylic acid-p-hydroxyphenylpropionate phenylpropanoid 15 18.28 $C_{24}H_{22}O_{10}^{+}$ 475.288 5 di -p-hydroxyphenylpropionic acid-p-hydroxyphenylpropionic acid-p-hydroxyphenylpropionic acid-p-hydroxyphenylacrylic acid-hexaglycoside phenylpropanoid 16 18.73 $C_{27}H_{19}O_7^{+}$ $455.242.8$ $tri-p$ -hydroxyphenylacrylic acid-hexaglycoside phenylpropanoid 17 22.33 $C_{27}H_{19}O_7^{+}$ $455.242.8$ $tri-p$ -hydroxyphenylacrylic acid-p-hydroxyphenylacrylic acid-p-phenylpropanoid phenylpropanoid 18 24.55 $C_{18}H_{19}O_3^{+}$ $309.206.3$ di -p-hydroxyphenylacrylic acid-p-phenylpropanoid phenylpropanoid 19 26.24 $C_{38}H_{29}O_3^{+}$ $603.164.8$ -0.3 $tri-p-hydroxyphenylpropionate phenylpropanoid 20 27.46 C_{18}H_{19}O_3^{+} 311.223.3 p-hydroxyphenylpropionate phenylpropanoid 21 29.25 C_{36}H_{29}O_3^{+} 605.404.5 di-p-hydroxyphenylpropionate phenylpropanoid 22 29.84 C_{18}H_{19}O_3^{+} 313.237.7 di-p-hydroxyphenylpropionate $	12	10.14	$C_{36}H_{25}O_8^{\ *}$	585.206 9			phenylpropanoid
hydroxyphenylpropionate1518.28 $C_{24}H_{27}O_{10}$ 475.288 5 $di-p-hydroxyphenylpropionic acid-p-caid-p-acid-p-caid-p$	13	10.87	$C_{15}H_{19}O_7^{*}$	311.113 2	2.2	hexaglycoside phenylpropionate	phenylpropanoid
1618.73 $C_{21}H_{22}O_{10}^{*}$ 473.239 3 <i>p</i> -hydroxyphenylpropionic acid- <i>p</i> - hydroxyphenylacrylic acid-hexaglycosidephenylpropanoid1722.33 $C_{21}H_{19}O_{1}^{*}$ 455.242 8 <i>tri-p</i> -hydroxyphenyl acrylatephenylpropanoid1824.55 $C_{18}H_{15}O_{2}^{*}$ 309.206 3 <i>di-p</i> -hydroxyphenyl acrylatephenylpropanoid1926.24 $C_{26}H_{27}O_{10}^{*}$ 603.164 8-0.3 <i>tri-p</i> -hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylpropionatephenylpropanoid2027.46 $C_{18}H_{15}O_{3}^{*}$ 311.223 3 <i>p</i> -hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylpropionatephenylpropanoid2129.25 $C_{26}H_{29}O_{4}^{*}$ 605.404 5 <i>di-p</i> -hydroxyphenylacrylic acid- <i>tri-p</i> - hydroxyphenylacrylic acid- <i>tri-p</i> - phenylpropanoidphenylpropanoid2331.26 $C_{18}H_{17}O_{3}^{*}$ 313.237 7 <i>di-p</i> -hydroxyphenylacrylic acid- <i>tri-p</i> - hydroxyphenylpropionatephenylpropanoid2431.80 $C_{18}H_{19}O_{4}^{*}$ 295.229 9cyclodihydroxyphenylpropionatephenylpropanoid2531.81 $C_{27}H_{29}O_{4}^{*}$ 441.259 0cyclottra- <i>p</i> -hydroxyphenylpropionatephenylpropanoid2633.74 $C_{27}H_{29}O_{4}^{*}$ 443.258 1cyclottra- <i>p</i> -hydroxyphenylpropionatephenylpropanoid2839.37 $C_{26}H_{34}O_{4}^{*}$ 607.248 4 <i>tri-p</i> -hydroxyphenylpropionatephenylpropanoid2941.91 $C_{27}H_{29}O_{4}^{*}$ 461.257 3 <i>tri-p</i> -hydroxyphenylpropionatephenylpropanoid29<	14	13.76	$C_{27}H_{19}O_6^{*}$	439.117 7	0.2		phenylpropanoid
hydroxyphenylacrylic acid-hexaglycoside1722.33 $C_{27}H_{19}O_{7}^{*}$ 455.242.8 $tri-p-hydroxyphenyl acrylatephenylpropanoid1824.55C_{18}H_{13}O_{5}^{*}309.206.3di-p-hydroxyphenyl acrylatephenylpropanoid1926.24C_{38}H_{27}O_{9}^{*}603.164.8-0.3tri-p-hydroxyphenylacrylic acid-p-hydroxyphenylpropionatephenylpropanoid2027.46C_{18}H_{15}O_{5}^{*}311.223.3p-hydroxyphenylacrylic acid-p-hydroxyphenylpropionatephenylpropanoid2129.25C_{38}H_{29}O_{8}^{*}605.404.5di-p-hydroxyphenylacrylic acid-tri-p-hydroxyphenylpropionatephenylpropanoid2331.26C_{18}H_{19}O_{8}^{*}313.237.7di-p-hydroxyphenylacrylic acid-tri-p-hydroxyphenylpropionatephenylpropanoid2431.80C_{18}H_{19}O_{8}^{*}295.229.9cyclodihydroxyphenylpropionatephenylpropanoid2531.83C_{38}H_{10}O_{8}^{*}591.313.6cyclottra-p-hydroxyphenylacrylic acid-p-hydroxyphenylpropionatephenylpropanoid2633.74C_{27}H_{29}O_{8}^{*}443.258.1cyclottra-p-hydroxyphenylpropionatephenylpropanoid2839.37C_{84}H_{34}O_{9}^{*}607.248.4tri-p-hydroxyphenylpropionatephenylpropanoid2941.91C_{27}H_{29}O_{8}^{*}461.257.3tri-p-hydroxyphenylpropionatephenylpropanoid309.68C_{11}H_{19}O_{1}443.089.24.3quercetin hexaglycosideflavonoid3110.71$	15	18.28	$C_{24}H_{27}O_{10}^{*}$	475.288 5		di-p-hydroxyphenylpropionic acid-hexaglycoside	phenylpropanoid
18 24.55 $C_{18}H_{13}O_{3}^{+}$ 309.206 3 $di-p$ -hydroxyphenyl acrylate phenylpropanoid 19 26.24 $C_{36}H_{27}O_{3}^{+}$ 603.164 8 -0.3 $tri-p$ -hydroxyphenylacrylic acid- p -hydroxyphenylacrylic acid- p -hydroxyphenylpropionate phenylpropanoid 20 27.46 $C_{18}H_{15}O_{3}^{+}$ 311.223 3 p -hydroxyphenylacrylic acid- p -hydroxyphenylpropionate phenylpropanoid 21 29.25 $C_{36}H_{29}O_{3}^{+}$ 605.404 5 $di-p$ -hydroxyphenylacrylic acid- $tri-p$ -hydroxyphenylpropionate phenylpropanoid 22 29.84 $C_{36}H_{29}O_{3}^{+}$ 589.303 6 cyclop-hydroxyphenylacrylic acid- $tri-p$ -hydroxyphenylpropionate phenylpropanoid 23 31.26 $C_{18}H_{17}O_{3}^{+}$ 313.237 7 $di-p$ -hydroxyphenylpropionate phenylpropanoid 24 31.80 $C_{18}H_{17}O_{3}^{+}$ 295.229 9 cyclodihydroxyphenylpropionate phenylpropanoid 25 31.83 $C_{27}H_{21}O_{6}^{+}$ 441.259 0 cyclotira- p -hydroxyphenylpropionate phenylpropanoid 26 33.74 $C_{27}H_{23}O_{6}^{+}$ 443.258 1 cyclotrip-hydroxyphenylpropionate phenylpropanoid 28 39.37 <	16	18.73	$C_{24}H_{25}O_{10}^{*}$	473.239 3			phenylpropanoid
19 26.24 $C_{34}H_{27}O_{4}^{*}$ 603.164 8 -0.3 $tri-p-hydroxyphenylacrylic acid-p-hydroxyphenylacrylic acid-p-hydroxyphenylacrylic acid-p-hydroxyphenylpropionatephenylpropanoid2027.46C_{18}H_{15}O_{3}^{*}311.223 3p-hydroxyphenylpropionatephenylpropanoid2129.25C_{36}H_{29}O_{9}^{*}605.404 5di-p-hydroxyphenylpropionic acid-di-p-hydroxyphenylacrylic acid-tri-p-hydroxyphenylacrylic acid-tri-p-hydroxyphenylacrylic acid-tri-p-hydroxyphenylacrylic acid-tri-p-hydroxyphenylacrylic acid-tri-p-hydroxyphenylpropionatephenylpropanoid2229.84C_{36}H_{29}O_{8}^{*}589.303 6cyclop-hydroxyphenylpropionatephenylpropanoid2331.26C_{18}H_{17}O_{5}^{*}313.237 7di-p-hydroxyphenylpropionatephenylpropanoid2431.80C_{18}H_{17}O_{4}^{*}295.229 9cyclotetra-p-hydroxyphenylpropionatephenylpropanoid2531.33C_{34}H_{31}O_{4}^{*}591.313 6cyclotetra-p-hydroxyphenylpropionatephenylpropanoid2633.74C_{27}H_{21}O_{6}^{*}441.259 0cyclotetra-p-hydroxyphenylpropionatephenylpropanoid2736.17C_{27}H_{23}O_{6}^{*}443.258 1cyclotrip-hydroxyphenylpropionatephenylpropanoid2839.37C_{3c}H_{31}O_{7}^{*}607.248 4tri-p-hydroxyphenylpropionatephenylpropanoid2941.91C_{27}H_{25}O_{7}^{*}461.257 3tri-p-hydroxyphenylpropionatephenylpropanoid309.68C_{21}H_{19}O_{11}$	17	22.33	C ₂₇ H ₁₉ O ₇ *	455.242 8		tri-p-hydroxyphenyl acrylate	phenylpropanoid
Image: Normal State	18	24.55	$C_{18}H_{13}O_5^*$	309.206 3		di-p-hydroxyphenyl acrylate	phenylpropanoid
1hydroxyphenylpropionatehydroxyphenylpropionia2129.25 $C_{36}H_{29}O_9^*$ 605.404 5 $di-p-hydroxyphenylpropionic acid-di-p-hydroxyphenylacrylic acid-tri-p-hydroxyphenylpropionatephenylpropanoid2229.84C_{36}H_{29}O_8^*589.303 6cyclop-hydroxyphenylacrylic acid-tri-p-hydroxyphenylpropionatephenylpropanoid2331.26C_{18}H_{17}O_5^*313.237 7di-p-hydroxyphenylpropionatephenylpropanoid2431.80C_{18}H_{19}O_4^*295.229 9cyclodihydroxyphenylpropionatephenylpropanoid2531.83C_{36}H_{31}O_8^*591.313 6cyclotetra-p-hydroxyphenylpropionatephenylpropanoid2633.74C_{27}H_{21}O_6^*441.259 0cyclotetra-p-hydroxyphenylacrylic acid-p-hydroxyphenylacrylic acid-p-hydroxyphenylacrylic acid-p-hydroxyphenylacrylatephenylpropanoid2736.17C_{27}H_{23}O_6^*443.258 1cyclotrip-hydroxyphenylpropionatephenylpropanoid2839.37C_{36}H_{31}O_9^*607.248 4tri-p-hydroxyphenylpropionatephenylpropanoid309.68C_{21}H_{29}O_1^*463.089 24.3quercetin hexaglycosideflavonoid3110.71C_{28}H_{35}O_{13}579.209 13.3gardenia flavonoidsflavonoid3210.88C_{21}H_{19}O_{11}447.091 9-0.6kaempferol six-carbon glycosideflavonoid3311.00C_{21}H_{19}O_{11}447.093 32.5quercetin six-carbon deoxyglucosideflavonoid$	19	26.24	$C_{36}H_{27}O_9^{*}$	603.164 8	-0.3		phenylpropanoid
2229.84 $C_{36}H_{29}O_8^*$ 589.303 6cyclop-hydroxyphenylacrylic acid- <i>tri-p</i> - hydroxyphenylpropionatephenylpropanoid2331.26 $C_{18}H_{17}O_5^*$ 313.237 7 <i>di-p</i> -hydroxyphenylpropionatephenylpropanoid2431.80 $C_{18}H_{15}O_4^*$ 295.229 9cyclodihydroxyphenylpropionatephenylpropanoid2531.83 $C_{36}H_{31}O_8^*$ 591.313 6cyclotetra- <i>p</i> -hydroxyphenylpropionatephenylpropanoid2633.74 $C_{27}H_{21}O_6^*$ 441.259 0cyclotetra- <i>p</i> -hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylacrylicphenylpropanoid2736.17 $C_{27}H_{23}O_6^*$ 443.258 1cyclotrip-hydroxyphenylpropionatephenylpropanoid2839.37 $C_{36}H_{31}O_9^*$ 607.248 4 <i>tri-p</i> -hydroxyphenylpropionatephenylpropanoid hydroxyphenylacrylate2941.91 $C_{27}H_{25}O_7^*$ 461.257 3 <i>tri-p</i> -hydroxyphenylpropionatephenylpropanoid hydroxyphenylpropionate309.68 $C_{21}H_{19}O_{12}$ 463.089 24.3quercetin hexaglycosideflavonoid3110.71 $C_{28}H_{35}O_{13}$ 579.209 13.3gardenia flavonoidsflavonoid3210.88 $C_{21}H_{19}O_{11}$ 447.091 9-0.66kaempferol six-carbon glycosideflavonoid3311.00 $C_{21}H_{19}O_{11}$ 447.093 32.5quercetin six-carbon deoxyglucosideflavonoid	20	27.46	$C_{18}H_{15}O_5^{*}$	311.223 3			phenylpropanoid
123 31.26 $C_{18}H_{17}O_5^*$ 313.2377 $di-p$ -hydroxyphenylpropionatephenylpropanoid24 31.80 $C_{18}H_{15}O_4^*$ 295.2299 cyclodihydroxyphenylpropionatephenylpropanoid25 31.83 $C_{36}H_{31}O_8^*$ 591.3136 cyclotetra- p -hydroxyphenylpropionatephenylpropanoid26 33.74 $C_{27}H_{21}O_6^*$ 441.2590 cyclop-hydroxyphenylacrylic acid- p -hydroxyphenylacrylic acid- p -hydroxyphenylacrylic acid- p -hydroxyphenylacrylitephenylpropanoid27 36.17 $C_{27}H_{23}O_6^*$ 443.2581 cyclotrip-hydroxyphenylpropionatephenylpropanoid28 39.37 $C_{36}H_{31}O_9^*$ 607.2484 $tri-p$ -hydroxyphenylpropionatephenylpropanoid29 41.91 $C_{27}H_{25}O_7^*$ 461.2573 $tri-p$ -hydroxyphenylpropionatephenylpropanoid30 9.68 $C_{21}H_{19}O_{12}$ 463.0892 4.3 quercetin hexaglycosideflavonoid31 10.71 $C_{28}H_{35}O_{13}$ 579.2091 3.3 gardenia flavonoidsflavonoid32 10.88 $C_{21}H_{19}O_{11}$ 447.0933 2.5 quercetin six-carbon glycosideflavonoid	21	29.25	$C_{36}H_{29}O_{9}^{*}$	605.404 5			phenylpropanoid
24 31.80 $C_{18}H_{15}O_{4}^{*}$ $295.229 9$ cyclodihydroxyphenylpropionatephenylpropanoid25 31.83 $C_{36}H_{31}O_{8}^{*}$ $591.313 6$ cyclotetra- <i>p</i> -hydroxyphenylpropionatephenylpropanoid26 33.74 $C_{27}H_{21}O_{6}^{*}$ $441.259 0$ cyclop-hydroxyphenylacrylic acid- <i>p</i> -hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylacrylic acid- <i>p</i> - hydroxyphenylacrylatephenylpropanoid27 36.17 $C_{27}H_{23}O_{6}^{*}$ $443.258 1$ cyclotrip-hydroxyphenylpropionatephenylpropanoid28 39.37 $C_{36}H_{31}O_{9}^{*}$ $607.248 4$ <i>tri-p</i> -hydroxyphenylpropionic acid- <i>p</i> - hydroxyphenyl acrylatephenylpropanoid29 41.91 $C_{27}H_{25}O_{7}^{*}$ $461.257 3$ <i>tri-p</i> -hydroxyphenylpropionatephenylpropanoid30 9.68 $C_{21}H_{19}O_{12}$ $463.089 2$ 4.3 quercetin hexaglycosideflavonoid31 10.71 $C_{28}H_{35}O_{13}$ $579.209 1$ 3.3 gardenia flavonoidsflavonoid32 10.88 $C_{21}H_{19}O_{11}$ $447.091 9$ -0.6 kaempferol six-carbon glycosideflavonoid33 11.00 $C_{21}H_{19}O_{11}$ $447.093 3$ 2.5 quercetin six-carbon deoxyglucosideflavonoid	22	29.84	$C_{36}H_{29}O_8^{\ *}$	589.303 6			phenylpropanoid
25 31.83 $C_{36}H_{31}O_8^*$ $591.313.6$ cyclotetra- <i>p</i> -hydroxyphenylpropionatephenylpropanoid26 33.74 $C_{27}H_{21}O_6^*$ $441.259.0$ cyclop-hydroxyphenylacrylic acid- <i>p</i> -hydroxyphenylacrylic acid- <i>p</i> -hydroxyphenylacrylic acid- <i>p</i> -hydroxyphenylacrylatephenylpropanoid27 36.17 $C_{27}H_{23}O_6^*$ $443.258.1$ cyclotrip-hydroxyphenylpropionatephenylpropanoid28 39.37 $C_{36}H_{31}O_9^*$ $607.248.4$ <i>tri-p</i> -hydroxyphenylpropionatephenylpropanoid29 41.91 $C_{27}H_{25}O_7^*$ $461.257.3$ <i>tri-p</i> -hydroxyphenylpropionatephenylpropanoid30 9.68 $C_{21}H_{19}O_{12}$ $463.089.2$ 4.3 quercetin hexaglycosideflavonoid31 10.71 $C_{28}H_{35}O_{13}$ $579.209.1$ 3.3 gardenia flavonoidsflavonoid32 10.88 $C_{21}H_{19}O_{11}$ $447.091.9$ -0.6 kaempferol six-carbon glycosideflavonoid33 11.00 $C_{21}H_{19}O_{11}$ $447.093.3$ 2.5 quercetin six-carbon deoxyglucosideflavonoid	23	31.26	$C_{18}H_{17}O_5^{*}$	313.237 7		di-p-hydroxyphenylpropionate	phenylpropanoid
26 33.74 $C_{27}H_{21}O_6^*$ $441.259.0$ cyclop-hydroxyphenylacrylic acid- p-hydroxyphenylacrylic acid-p- hydroxyphenylacrylatephenylpropanoid27 36.17 $C_{27}H_{23}O_6^*$ $443.258.1$ cyclotrip-hydroxyphenylpropionatephenylpropanoid28 39.37 $C_{36}H_{31}O_9^*$ $607.248.4$ tri-p-hydroxyphenylpropionic acid-p- hydroxyphenyl acrylatephenylpropanoid29 41.91 $C_{27}H_{25}O_7^*$ $461.257.3$ tri-p-hydroxyphenylpropionatephenylpropanoid30 9.68 $C_{21}H_{19}O_{12}$ $463.089.2$ 4.3 quercetin hexaglycosideflavonoid31 10.71 $C_{28}H_{35}O_{13}$ $579.209.1$ 3.3 gardenia flavonoidsflavonoid32 10.88 $C_{21}H_{19}O_{11}$ $447.091.9$ -0.6 kaempferol six-carbon glycosideflavonoid33 11.00 $C_{21}H_{19}O_{11}$ $447.093.3$ 2.5 quercetin six-carbon deoxyglucosideflavonoid	24	31.80	$C_{18}H_{15}O_4^{\ *}$	295.229 9		cyclodihydroxyphenylpropionate	phenylpropanoid
27 36.17 $C_{27}H_{23}O_6^*$ 443.258 $cyclotrip-hydroxyphenylacrylate$ phenylpropanoid28 39.37 $C_{36}H_{31}O_9^*$ 607.248 $cyclotrip-hydroxyphenylpropionate$ phenylpropanoid29 41.91 $C_{27}H_{25}O_7^*$ 461.257 $tri-p$ -hydroxyphenylpropionatephenylpropanoid30 9.68 $C_{21}H_{19}O_{12}$ 463.089 4.3 quercetin hexaglycosideflavonoid31 10.71 $C_{28}H_{35}O_{13}$ 579.209 3.3 gardenia flavonoidsflavonoid32 10.88 $C_{21}H_{19}O_{11}$ 447.091 -0.6 kaempferol six-carbon glycosideflavonoid33 11.00 $C_{21}H_{19}O_{11}$ 447.093 2.5 quercetin six-carbon deoxyglucosideflavonoid	25	31.83	$C_{36}H_{31}O_8^{\ *}$	591.313 6		cyclotetra-p-hydroxyphenylpropionate	phenylpropanoid
28 39.37 $C_{36}H_{31}O_{9}^{*}$ $607.248~4$ $tri-p$ -hydroxyphenylpropionic acid- p - hydroxyphenyl acrylatephenylpropanoid 29 41.91 $C_{27}H_{25}O_{7}^{*}$ $461.257~3$ $tri-p$ -hydroxyphenylpropionatephenylpropanoid 30 9.68 $C_{21}H_{19}O_{12}$ $463.089~2$ 4.3 quercetin hexaglycosideflavonoid 31 10.71 $C_{28}H_{35}O_{13}$ $579.209~1$ 3.3 gardenia flavonoidsflavonoid 32 10.88 $C_{21}H_{19}O_{11}$ $447.091~9$ -0.6 kaempferol six-carbon glycosideflavonoid 33 11.00 $C_{21}H_{19}O_{11}$ $447.093~3$ 2.5 quercetin six-carbon deoxyglucosideflavonoid	26	33.74	$C_{27}H_{21}O_{6}^{*}$	441.259 0		p-hydroxyphenylacrylic acid-p-	phenylpropanoid
hydroxyphenyl acrylate29 41.91 $C_{27}H_{25}O_{7}^{*}$ $461.257.3$ $tri-p$ -hydroxyphenylpropionatephenylpropanoid30 9.68 $C_{21}H_{19}O_{12}$ $463.089.2$ 4.3 quercetin hexaglycosideflavonoid31 10.71 $C_{28}H_{35}O_{13}$ $579.209.1$ 3.3 gardenia flavonoidsflavonoid32 10.88 $C_{21}H_{19}O_{11}$ $447.091.9$ -0.6 kaempferol six-carbon glycosideflavonoid33 11.00 $C_{21}H_{19}O_{11}$ $447.093.3$ 2.5 quercetin six-carbon deoxyglucosideflavonoid	27	36.17	$C_{27}H_{23}O_{6}^{*}$	443.258 1		cyclotrip-hydroxyphenylpropionate	phenylpropanoid
309.68 $C_{21}H_{19}O_{12}$ 463.089 24.3quercetin hexaglycosideflavonoid3110.71 $C_{28}H_{35}O_{13}$ 579.209 13.3gardenia flavonoidsflavonoid3210.88 $C_{21}H_{19}O_{11}$ 447.091 9-0.6kaempferol six-carbon glycosideflavonoid3311.00 $C_{21}H_{19}O_{11}$ 447.093 32.5quercetin six-carbon deoxyglucosideflavonoid	28	39.37	$C_{36}H_{31}O_9^{*}$	607.248 4			phenylpropanoid
31 10.71 $C_{28}H_{35}O_{13}$ 579.209 3.3 gardenia flavonoids flavonoid 32 10.88 $C_{21}H_{19}O_{11}$ 447.091 9 -0.6 kaempferol six-carbon glycoside flavonoid 33 11.00 $C_{21}H_{19}O_{11}$ 447.093 2.5 quercetin six-carbon deoxyglucoside flavonoid	29	41.91	$C_{27}H_{25}O_7^{*}$	461.257 3		tri-p-hydroxyphenylpropionate	phenylpropanoid
3210.88 $C_{21}H_{19}O_{11}$ 447.091 9-0.6kaempferol six-carbon glycosideflavonoid3311.00 $C_{21}H_{19}O_{11}$ 447.093 32.5quercetin six-carbon deoxyglucosideflavonoid	30	9.68	$C_{21}H_{19}O_{12}$	463.089 2	4.3	quercetin hexaglycoside	flavonoid
33 11.00 $C_{21}H_{19}O_{11}$ 447.093 3 2.5 quercetin six-carbon deoxyglucoside flavonoid	31	10.71	$C_{28}H_{35}O_{13}$	579.209 1	3.3	gardenia flavonoids	flavonoid
	32	10.88	$C_{21}H_{19}O_{11}$	447.091 9	-0.6	kaempferol six-carbon glycoside	flavonoid
34 11.92 C ₁₅ H ₉ O ₇ 301.035 9 5.4 quercetin flavonoid	33	11.00	$C_{21}H_{19}O_{11}$	447.093 3	2.5	quercetin six-carbon deoxyglucoside	flavonoid
	34	11.92	$\mathrm{C_{15}H_9O_7}$	301.035 9	5.4	quercetin	flavonoid

Table 1 105 compounds of the crude extract of D. chrysanthum

No.	Table 1 (Continued) No. T _p /min Formula [M-H]- Error/ppm Name Classification						
	T_R/min		[M-H]-	Error/ppm			
35 36	12.84 12.93	$C_{15}H_9O_6$	285.041 2 269.044 4	-0.9 -0.2	kaempferol	flavonoid flavonoid	
		$C_{15}H_9O_5$			apigenin		
37	15.08	$C_{15}H_{11}O_5$	271.060 4	1.1	naringenin	flavonoid	
38	16.87	$C_{16}H_{11}O_7$	315.050 1	0.4	isorhamnetin	flavonoid	
39	12.03	$C_{15}H_{13}O_4$	257.081 4	2.2	methoxy-trihydroxy phenanthrene	stilbene	
40	12.65	$C_{15}H_{15}O_4$	259.096 4	-0.3	tristin	stilbene	
41	14.08	$C_{16}H_{17}O_5$	289.107 5	1.4	trimethoxy-dihydroxy bibenzyl	stilbene	
42	14.16	$C_{19}H_{23}O_6$	347.153 1	-3.5	pentamethoxy-hydroxy bibenzyl	stilbene	
43	14.39	$C_{15}H_{15}O_4$	259.097 2	3.1	methoxy trihydroxy bibenzyl	stilbene	
44	16.55	$C_{15}H_{13}O_3$	241.085 0	-3.8	methoxy-dihydroxy-dihydrophenanthrene	stilbene	
45	16.76	$C_{17}H_{19}O_5$	303.123 5	2.6	dendrobium candidum	stilbene	
46	16.88	$C_{15}H_{11}O_4$	255.065 5	1.3	methoxy-trihydroxy phenanthrene	stilbene	
47	16.91	$C_{15}H_{11}O_4$	255.065 7	2.0	methoxy-hydroxy-9,10-dihydrophenanedione	stilbene	
48	17.13	$\mathrm{C_{16}H_9O_6}$	297.038 8	-1.8	dimethoxy phenanthrene tetraone	stilbene	
49	17.27	$C_{16}H_{17}O_4$	273.113 2	3.9	gigantol	stilbene	
50	17.28	$C_{16}H_{17}O_4$	273.113 3	4.3	dendrobium phenol	stilbene	
51	17.30	$C_{15}H_{16}O_3$	243.102 5	3.7	batatasin-III	stilbene	
52	19.86	$C_{17}H_{19}O_5$	303.121 3	-4.6	moscatilin	stilbene	
53	19.89	$C_{17}H_{19}O_4$	287.126 6	-4.1	trimethoxy-hydroxy bibenzyl	stilbene	
54	21.05	$C_{16}H_{13}O_4$	269.081 6	2.8	amoenumin	stilbene	
55	22.60	$C_{15}H_{11}O_3$	239.070 2	-0.3	methoxy-dihydroxy phenanthrene	stilbene	
56	17.92	$C_{16}H_{11}O_5$	283.060 5	1.6	dimethoxy-hydroxy-phenanthrene diketone	stilbene	
57	18.11	$C_{15}H_{13}O_4$	257.081 2	1.4	methoxy-trihydroxy-dihydrobibenzyl	stilbene	
58	18.96	$C_{16}H_{15}O_4$	271.062 1	7.4	trimethoxy-dihydroxy-9,10-dihydrophenanthrene	stilbene	
59	19.15	$\mathrm{C_{15}H_9O_4}$	253.049 9	1.4	methoxy-hydroxy-phenanthrene diketone	stilbene	
60	19.87	$C_{17}H_{15}O_4$	283.096 3	-0.4	trimethoxy-hydroxyphenanthrene	stilbene	
62	20.75	$C_{17}H_{13}O_6$	313.072 9	6.8	tetramethoxy-hydroxyphenanthrene	stilbene	
62	20.77	$C_{17}H_{17}O_5$	301.099 5		trimethoxy-dihydroxy-9,10-dihydrophenanthrene	stilbene	
63	22.62	$C_{17}H_{15}O_5$	299.091 9	1.7	trimethoxy-dihydroxy phenanthrene	stilbene	
64	8.91	$C_{16}H_{26}NO_2$	264.194 9	-3.4	dendrobium alkaloid	alkaloid	
65	9.04	$C_{19}H_{30}NO_{3}$	320.211 9		dendrobium paratine	alkaloid	
66	9.57	$C_{16}H_{26}NO_3$	280.190 9	0.6	dendrobium aminophylline	alkaloid	
67	7.49	$C_{16}H_{24}NO_4$	294.168 1	-4.4	3-OH-2-O-Dendrobium alkaloid	alkaloid	
68	14.79	$C_{22}H_{34}NO_3$	360.251 8	-4.2	<i>n</i> -isopentene-6 murine OH-Dendrobium	alkaloid	
69	8.56	$\mathrm{C_{17}H_{28}NO_2}$	278.210 8	-2.4	n-methyl Dendrobium alkaloid	alkaloid	
70	13.55	$C_{16}H_{24}NO_3$	278.174 4	-1.4	mubiroaines A	alkaloid	
71	8.99	$C_{15}H_{24}NO_2$	250.179 6	-1.0	mubiroaines B	alkaloid	
72	14.66	C ₁₉ H ₃₂ NO ₄	338.232 5	-0.2	dendrowardine	alkaloid	
73	4.54	$C_{12}H_{14}NO_2$	204.101 8	-0.7	dendrobium	alkaloid	
74	9.16	$C_{21}H_{30}NO_{3}$	344.224 1	6.1	crepidine	alkaloid	
75	14.36	C ₈ H ₁₆ NO	142.122 7	0.4	hygrine	alkaloid	
76	54.12	C ₂₉ H ₄₉ O	413.375 8	-4.8	β-sitosterol	steroid	
77	58.57	C ₃₅ H ₅₉ O ₄	575.427 0	-1.1	daucosterol	steroid	
78	39.96	C ₂₇ H ₄₁ O ₄	429.296 0		iso-neutigenin	steroid	
		2/ 41 4			C C		

Table 1 (Continued)

No.	TR/min	Formula	[M-H]-	Error/ppm	Name	Classification
79	34.72	$C_{33}H_{51}O_9$	591.357 3		neutigenin glucoside	steroid
80	67.67	$C_9H_{11}O_3$	167.070 9		1, 3, 5-trimethoxybenzene	aromatics
81	61.31	$C_{16}H_{31}O_2$	255.231 3		hexadecanoic acid	aliphatic
82	17.95	$C_{16}H_{11}O_5$	283.060 3		emodin methyl ether	anthraquinone
83	16.88	$C_{15}H_{11}O_4$	255.065 7		chrysophanol	anthraquinone
84	15.79	$\mathrm{C_{14}H_9O_5}$	257.045 4	3.7	trihydroxymethoxyfluorenone	fluorenone
85	11.77	$\mathrm{C_{14}H_9O_4}$	241.050 8	5.5	dihydroxymethoxyfluorenone	fluorenone
86	18.81	$C_{15}H_{11}O_5$	271.062 1	7.4	dengibsinin	fluorenone
87	17.05	$C_{15}H_{11}O_{6}$	287.055 1	0.4	chrysotoxone	fluorenone
88	2.70	$C_{13}H_{15}O_{10}$	331.067 0	3.1	gal-glc	saccharide
89	2.60	$C_{12}H_{21}O_{11}$	341.107 7	-0.4	glc-glc	saccharide
90	4.13	$C_7H_5O_5$	169.012 9	-1.5	Gallic acid	phenolic acid
91	3.10	$C_{17}H_{29}O_{15}$	473.149 4	-1.5	glc-glc- five-carbon deoxy sugar	saccharide
92	9.02	C_8H_7O	119.050 3		hydroxy vinyl benzene	phenolic acid
93	7.47	$C_7H_5O_2$	121.030 5		hydroxybenzaldehyde	phenolic acid
94	10.09	C ₈ H ₉ O	121.067 8		methoxytoluene	aromatics
95	5.8	$C_7H_5O_3$	137.024 0	4.8	hydroxybenzoic acid	phenolic acid
96	8.67	$C_8H_7O_3$	151.039 7	4.8	methoxybenzoic acid/methyl hydroxybenzoate	phenolic acid
97	4.94	$C_7H_5O_4$	153.019 5	8.5	dihydroxybenzoic acid	phenolic acid
98	7.38	$C_8H_7O_4$	167.084 2	1.6	vanillic acid	phenolic acid
99	5.80	$C_8H_5O_5$	181.075 3	1.7	hydroxyphthalic acid	phenolic acid
100	9.20	$C_9H_9O_4$	181.050 2	3.7	clove aldehyde	aromatics
101	6.23	$C_8H_7O_5$	183.029 5	3.8	dihydroxymethoxybenzoic acid	phenolic acid
102	9.79	$\mathrm{C_{10}H_9O_4}$	193.049 4	-0.3	dimethoxyphthalaldehyde	aromatics
103	7.40	$C_{10}H_{11}O_4$	195.065 0	-1.2	trimethoxybenzaldehyde	aromatics
104	11.94	$\mathrm{C_{13}H_7O_3}$	211.040 7	8.1	hydroxy naphthoic acid	phenolic acid
105	7.55	$C_9H_9O_5$	197.044 0	-2.3	syringic acid	phenolic acid

Table 1 (Continued)

*Reported before.

on the data of IR, MS, ¹H-NMR, ¹³C-NMR, UV and physicochemical characters.

2.4 Structural elucidation of the isolated compounds

63 compounds were isolated including 11 steroids, 6 phenanthrenes, 4 fluorenones, 9 phenolic acids, 9 aliphatics, 3 anthraquinones, 7 phenylpropanoids, 5 flavones, 3 terpenoids, 2 alkaloids, 2 saccharides, 1 amino acid and 1 aromatic (Table 2). Among them, 27 compounds were first reported from *D. chrysanthum* including 6 steroids, 2 phenanthrenes, 4 phenolic acids, 1 aliphatic, 4 phenylpropanoids, 4 flavones, 3 terpenoids, 1 alkaloid, 1 amino acid and 1 aromatic.

3 Chemotaxonomic significance

Dendrobium is characterized by the occurrence of steroids, stilbenoids, alkaloids, anthraquinones, et al. Besides these kinds of compounds, some valuable compounds like novel polyphenylpropanoid and pseudo-spirostanol had been identified at the same time, which might constitute the key characteristics that this medicinal material differentiated from other *Dendrobium* species on the basis of chemical substances, and then reveal the relationship between the unique secondary metabolic characteristics and medicinal value of *D. chrysanthum*.

No.	Compound	Classification	Fraction attribution
1	β -sitosterol	steroid	CHCl ₃
2	daucosterol	steroid	CHCl ₃
3	isonuatigenin	steroid	CHCl ₃
4	26-O-β-D-glucopyranosylnuatigenin	steroid	CHCl ₃
5	diosgenin-3-O-(α -L-rhamnopyranosyl-(1 \rightarrow 2)-(α -L-rhamnopyranosyl-(1 \rightarrow 3))- β -D-glucopyranoside)	steroid	<i>n</i> -BuOH
6	diosgenin3- <i>O</i> -(4-deoxygenated- α -L-rhamnopyranosyl-(1 \rightarrow 2)-(α -L-glucose-(1 \rightarrow 3))- β - <i>D</i> -glucopyraaanoside	steroid	<i>n</i> -BuOH
7	(25R)-26- <i>O</i> -(β- <i>D</i> -glucopyranosyl-furost-5-ene-3β, 22α, 26-trio-3- <i>O</i> -β- <i>D</i> -glucopyranoside-(1→2)-α- <i>L</i> -rhamnopyranosyl	steroid	<i>n</i> -BuOH
8	25 <i>R</i> -spirost-5-ene-3 β , 14 α , 17 α -triol-3- <i>O</i> - α -L-rhamnopyranosyl-(1 \rightarrow 2)- β - <i>D</i> -glucopyranoside	steroid	<i>n</i> -BuOH
9	stigmasterol	steroid	EtOAc
10	diosgenin	steroid	EtOAc
11	$(25R)$ -26- O - $(\alpha$ - D -glucopyranosyl)- $(1 \rightarrow 2)$ - α - L -rhamnopyranosyl-furost-5-ene- 3 β , 22 α , 26-triol-3- O - α - D -glucopyranoside)	steroid	<i>n</i> -BuOH
12	moscatin	phenanthrene	CHCl ₃
13	2, 5-dihydroxy-4-methoxy-9, 10-dihydrophenanthrene	phenanthrene	CHCl ₃
14	2, 4-dihydroxy-5-methoxy-9, 10-dihydrophenanthrene	phenanthrene	CHCl ₃
15	loddigesiinol A	phenanthrene	CHCl ₃
16	2, 4, 5-trihydroxy-9, 10-dihydrophenanthrene	phenanthrene	<i>n</i> -BuOH
17	dendrochrysanene	phenanthrene	EtOAc
18	2, 4, 7-trihydroxy-5-methoxy-9-fluorenone	fluorenone	CHCl ₃
19	2, 7-dihydroxy-4-methoxy-9-fluorenone	fluorenone	CHCl ₃
20	dengibsinin	fluorenone	CHCl ₃
21	chrysotoxone	fluorenone	CHCl ₃
22	1, 3, 5-trimethoxybenzene	phenolic acid	CHCl ₃
23	syringic acid	phenolic acid	CHCl ₃
24	syringaldazin	phenolic acid	CHCl ₃
25	p-hydroxybenzaldehyde	phenolic acid	CHCl ₃
26	vanillic acid	phenolic acid	CHCl ₃
27	<i>p</i> -hydroxyphenyl propionic acid	phenolic acid	CHCl ₃
28	erigeside C	phenolic acid	CHCl ₃
29	isovanillic acid	phenolic acid	EtOAc
30	3, 4, 5-trihydroxybenzoic acid	phenolic acid	EtOAc
31	hentriacontanol alcohol	aliphatics	CHCl ₃
32	palmitic acid	aliphatics	CHCl ₃
33	dotriacontane	aliphatics	CHCl ₃
34	dotriacontanol alcohol	aliphatics	CHCl ₃
35	4-hydroxy-2-hexadecenoate	aliphatics	CHCl ₃
36	2-methoxybenzenepropanoic acid	aliphatics	CHCl ₃
37	2-methoxy-benzoic acid propyl ester	aliphatics	CHCl ₃
38	myricetin	aliphatics	CHCl ₃
39	physcion	anthraquinone	CHCl ₃
40	chrysophanol	anthraquinone	CHCl ₃
41	emodin	anthraquinone	EtOAc
42	defusine	phenylpropanoid	CHCl ₃

No.	Compound	Classification	Fraction attribution
43	coumarin	phenylpropanoid	CHCl ₃
44	cyclo-di-p-hydroxyphenylpropionic acid-trans-p-hydroxyphenylacrylate lactone	phenylpropanoid	CHCl ₃
45	p-hydroxy-cinnamic acid	phenylpropanoid	EtOAc
46	p-hydroxyphenyl propionic acid	phenylpropanoid	EtOAc
47	caffeic acid	phenylpropanoid	EtOAc
48	trans-cinnamic acid	phenylpropanoid	EtOAc
49	4, 5, 7-trihydroxyflavone	flavonoid	EtOAc
50	2-(3-methyl-2-ethoxyphenyl)-flavone	flavonoid	CHCl ₃
51	4-hydroxy-2-hexadecenoate	aliphatics	CHCl ₃
52	4', 5, 7-trihydroxyflavone	flavonoid	EtOAc
53	3, 5, 7, 3', 4' -pentahydroxyflavone	flavonoid	EtOAc
54	3, 4', 5, 7-tetrahydroxyflavone	flavonoid	EtOAc
55	3β -hydroxy-28-norurs-12, 17-dien	terpenoid	CHCl ₃
56	oleana-11, 13(18)-dien-3-ol	terpenoid	CHCl ₃
57	3, 12-dioxofriedelan-19-methoxyfriedelane	terpenoid	CHCl ₃
58	(-)-trans-dendrochrysine	alkaloid	CHCl ₃
59	3-methylpyrrole-dendrochrysine	alkaloid	CHCl ₃
60	phenylalanine	amino acid	EtOAc
61	2, 2'- oxodibis (1,4-di-tert-butylbenzene)	aromatics	EtOAc
62	<i>D</i> -glucose	saccharide	<i>n</i> -BuOH
63	maltose	saccharide	<i>n</i> -BuOH

Table 2 (Continued)

3.1 Polyphenylpropanoids

Phenylpropanoids refer to natural compounds with one or more C_6 - C_3 units in the basic parent nucleus, including simple phenylpropanoids, coumarins, lignans and so on. In the process of separating and extracting the CHCl₃ part of *D. chrysanthum*, polyphenylpropanoid compounds were detected UPLC/Q-TOF-MS/ MS and isolated. It was the first time for us to report a new phenylpropanoid compound, cyclodi-p-hydroxyphenylpropionic acid-trans-phydroxyphenylacrylate lactone (Fig. 1) from *D. chrysanthum*. The new polyphenylpropanoids were found to have unique structures^[14].

3.2 Steroids

Pseudo-spirostanol, whose F ring was found to be a five-membered tetrahydrofuran ring, is rare in nature. Through the separation and extraction of CHCl₃ part, a pseudo-spirostanol, $26-O-\beta$ -

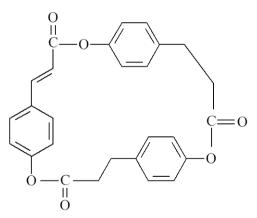


Fig. 1 Structure of the novel polyphenylpropanoid

D-glucopyranosyl nuatigenin was identified for the first time in *D*. *chrysanthum*. Steroids and their glycosides like β -sitosterol, daucosterol and isonuatigenin were also found in the CHCl₃ part of *D*. *chrysanthum* in our study. Isonuatigenin and 26-O- β -D-glucopyranosyl nuatigenin were isolated for the first time from *Dendrobium* genus, especially the pseudo-spirostanol, which was distinct in only a few origins such as Lilium^[15]. And (25R)-26-O-(α -D-glucopyranosyl)-(1 \rightarrow 2)- α - L-rhamnopyranosyl-furost-5-ene-3 β , 22 α , 26-triol-3-O- α -D-glucopyranoside, (25R)-26-O-(β -Dglucopyranosy-furost-5-ene-3 β , 22 α , 26-triol-3-O- β -D-glucopyranoside-(1 \rightarrow 2)- -L-rhamnopyranosyl, diosgenin 3-O-(α -L-rhamnopyranosyl-(1 \rightarrow 2)-(α -L-rhamnopyranosyl-(1 \rightarrow 3))- β -D-glucopyranoside were reported in the genus *Dendrobium*^[9,16].

3.3 Stilbenoids

Stilbenoid is a kind of characteristic components spread in epiphytic orchid plants, which has a wide range of biological activities and good application prospects. But its synthesis is tedious, and the source of natural products is very limited. The contents of stilbenoids, including phenanthrenes and bibenzyls in 18 species of Dendrobium were determined by reversed-phase high performance liquid chromatography (RP-HPLC) in previous study and the results showed that there were 1-2 or even 3 components in different Dendrobium species. Phenanthrenes and dihydrophenanthrene were substituted by polyhydroxyl and methoxy groups in Dendrobium, and only a small amount of phenanthrenes were dimer and phenanthrenequinone. Bibenzyl compounds were the characteristic active components isolated from Dendrobium in recent years. In our study, 6 stilbenes were found in D. chrysanthum including moscatin, loddigesiinol A, dendrochrysanene, 2, 4, 5-trihydroxy-9, 10-dihydrophenanthrene, 2, 4-dihydroxy-5-methoxy-9,10-dihydrophenanthrene and 2, 5-dihydroxy-4-methoxy-9,10dihydrophenanthrene^[8]. Moscatin was previously isolated from the Dendrobium aphyllum and loddigesiinol A from *Dendrobium loddigesii*^[17]. And it is the first report of 2, 4-dihydroxy-5methoxy-9, 10-dihydrophenanthrene in the genus Dendrobium^[8].

3.4 Flavonoids

Flavonoids have a wide range of biological activities and have been applied in the development

and utilization of food, health products and drugs. It has been reported that flavonoids have the effect of anti-cardiovascular and cerebrovascular diseases, anti-oxidation, anti-aging, analgesia and anti-virus. Previous studies have reported that flavonoids are the main components of antioxidant activity of *Dendrobium candidum*. A large number of flavonoid glycosides were also found in the flowers, leaves and stems of *D. candidum*. In the course of our study on the components of *D. chrysanthum*, we identified 5 flavonoids including 4,5,7-trihydroxyflavone, 2-(3-methyl-2-ethoxyphenyl)-flavone, 4',5,7-trihydroxyflavone, 3,5,7,3',4'-pentahydroxyflavone in *D. chrysanthum*.

3.5 Alkaloids

Alkaloid is a kind of main characteristic component of *Dendrobium*. There are differences in the quantity and content of alkaloids in different species of *Dendrobium*. The alkaloids in *D. candidum* are mainly amides, while in *D. chrysanthum*, we identified 2 alkaloids, (-)-trans-dendrochrysine and 3-methylpyrrole-dendrochrysine. It was the first time to find 3-methylpyrrole-dendrochrysine from *D. chrysanthum*.

3.6 Fluorenones

The isolation of fluorenones from *D. chrysanthum* might expand our understanding of the chemical composition of the family Orchidaceae. In our study, four fluorenones, 2, 4, 7-trihydroxy-5-methoxy-9-fluorenone, 2, 7-dihydroxy-4-methoxy-9-fluorenone, dengibsinin and chrysotoxone were found in the dry stem of *D. chrysanthum*.

3.7 Others

In our study, 9 phenolic acids, 9 aliphatics, 3 anthraquinones, 3 terpenoids, 2 saccharides, 1 amino acid and 1 aromatic were isloated from the dry stem of *D. chrysanthum*. Although these compounds do not seem to have systematic significance as they have been reported from other families, like Ranunculaceae^[18], Cruciferae^[19-20], Caprifoliaceae^[21], Scrophulariaceae^[22], Leguminosae sp^[23] and Polygonaceae^[24]. The occurrence of these compounds in the genus *Dendrobium* is worthy of further study. Compounds like 1, 3, 5-trimethoxybenzene, syringic acid, syringaldehyde, p-hydroxybenzaldehyde, vanillic acid and palmitic acid were widespread in family of Orchidaceae. Defuscin was isolated as a new natural product from the genus *Dendrobium*^[25].

4 Pharmacological properties

Many species of *Dendrobium* have been commonly used in folk medicine for the treatment of inflammatory, hypoglycemia, tumor, oxidation, immunomodulatory. The studies on the activity of chemical constituents of *Dendrobium* were mainly focused on polysaccharides, but few on small molecules. In order to further explore the pharmacological activities of *D. chrysanthum*, this experiment focuses on the anti-inflammatory, antioxidant, anti-tumor and hypoglycemic activities of the chemical constituents of *D. chrysanthum*.

4.1 Anti-inflammatory

It had been reported that a new phenanthrene with a spirolactone from D. chrysanthum might presents anti-inflammatory activities^[26]. The studies on the anti-inflammatory activities of chemical constituents of Dendrobium were mainly focused on polysaccharides. In order to further explore the pharmacological activity of D. chrysanthum, the inhibitory effects of different fractions and related active components of D. chrysanthum on the production of nitric oxide (NO) in BV2 cells were observed through the mouse microglia BV2 inflammation model induced by lipopolysaccharide (LPS). The results showed that the active components of *D. chrysanthum* could significantly inhibit the release of NO from BV2 cells induced by LPS in a dose-dependent manner^[27].

4.2 Antioxidation

With the in-depth study of the chemical constituents of Dendrobium, more and more attention has been paid to the antioxidant activity of other plants of Dendrobium. In the previous study, EtOAc fraction was selected as the antioxidant active part of D. chrysanthum by using 1, 1-diphenyl-2picrylhydrazyl radical (DPPH) assay. In our study, total antioxidant capacity assay kits with ABTS method (ABTS) radical scavenging ability and hydroxyl radical scavenging ability were used to investigate the antioxidant capacity of D. chrysanthum extract and its different parts. The results showed that the total extract of D. chrysanthum and its fractions had a certain scavenging effect on ABTS free radicals, and the scavenging ability was dose-dependent, among which EtOAc fraction had the strongest scavenging ability on ABTS free radicals. The hydroxyl radical scavenging ability of n-BuOH fraction was the strongest.

4.3 Antitumor

The characteristics of multi-level, multi-link and multi-target of traditional Chinese medicine (TCM) making it useful in the prevention and treatment of tumor. A large body of literature has reported that Dendrobium has antitumor effects in various tumor cells. In our study, human cervical cancer cell line (Hela), human prostate cancer cell lines (PC3 and LNCaP), human lung adenocarcinoma cell line (SPC-A1) and human breast cancer cell line (MCF-7) were used to study the antitumor activity of compounds isolated from D. chrysanthum. The results showed that compounds isolated from D. chrysanthum had obvious inhibitory effect on SPC-A1, PC3, LNCaP and MCF-7 cancer cell lines, and the inhibitory effect on SPC-A1 was stronger than that of MCF- $7^{[27-28]}$.

4.4 Hypoglycemia activity

In recent years, as a main component of some prescriptions for diabetes, the pharmacology and

mechanism of *Dendrobium* for diabetes attracted many researchers. In our study, the hypoglycemic activity of the extract from *D. chrysanthum* was screened by *in vivo* and *in vitro* experiment. The CHCl₃ fraction had the best hypoglycemic activity with less cytotoxicity. At the same time, the crude extract of *D. chrysanthum* was used to investigate the effect on type 2 diabetic rats induced by highglucose and high-fat diet combined with low-dose Streptozotocin (STZ) injection. It had significant hypoglycemic effect and could comprehensively improve the dyslipidemia and insulin resistance of type 2 diabetic rats, and enhance the glucose tolerance of type 2 diabetic rats^[12,29-31].

5 Conclusion

Dendrobium has a long history of medicinal use of "nourishing Yin and invigorating Qi"and beneficial medical and healthy functions. It is characterized by the occurrence of steroids, alkaloids, stilbenoids and anthraquinones in previous study^[33]. The present phytochemical investigation has further enriched our knowledge about the chemistry of the family Orchidaceae and the Dendrobium genus, and has identified polyphenylpropanoids and pseudo-spirostanol as the potential chemotaxonomic markers for the species. Additionally, compounds like (25R)-26-O-(β -D-glucopyranosyl-furost-5-ene- 3β , 22α , 26-triol-3-O- β -D-glucopyranoside-(1 \rightarrow 2)- α -Lrhamnopyranosyl, dip-hydroxyphenylpropionic acidic p-coumaric acid lactone, diosgenin, and 3-O-(α -L-rhamnopyranosyl-1 \rightarrow 2)-(α -L*r*hamnopyranosyl- $(1\rightarrow 3)$)- β -*D*-glucopyranoside were firstly reported from this plant. These identified compounds could be potential chemotaxonomic markers for the species. The pharmacological activities of D. chrysanthum were summarized including the anti-inflammatory, antioxidant, anti-tumor and hypoglycemic activities of the ethanol extract and identified constituents.

The study of *Dendrobium* is a work of excavating

the essence of TCM, which has broadened research prospects and application value. And it is also necessary to domesticate wild *Dendrobium* to achieve large-scale artificial planting to solve the problem of shortage of *Dendrobium* resources.

References

- He CM, Liu XC, Teixeira da Silva Jaime A, et al. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in *Dendrobium officinale* (Orchidaceae)[J]. *Plant Mol Biol*, 2020, 104(4-5):529-548.
- [2] Teixeira da Silva JA, Ng TB. The medicinal and pharmaceutical importance of Dendrobium species [J]. *Appl Microbiol Biotechnol*, 2017, 101:2227-2239.
- [3] Li XW, Chen HP, He YY, et al. Effects of Rich-Polyphenols Extract of *Dendrobium loddigesii* on Anti-Diabetic, Anti-Inflammatory, Anti-Oxidant, and Gut Microbiota Modulation in db/db Mice[J]. *Molecules*, 2018, 23(12):3245.
- [4] Min ZD, Tanaka T, Iinama M. et al. A New Dihydrostilbene in *Dendrobium chrysanthum*[J]. *J Nat Prod*, 1987, 50(6):1189.
- [5] Yang L, Wang Y, Bi ZM, et al. Studies on Chemical Constituents of *Dendrobium chrysanthum*[J]. *Chin J Nat Med*, 2004, 2(5):280-282.
- [6] Weng RX, Li YP, Chen LJ, et al. Chemical Constituents from the Herbs of *Dendrobium chrysanthum*[J]. *J Kunming Med Univ*, 2017, 38(02):6-9.
- [7] Ye QH, Zhao WM, Qin GW. New Fluorenone and Phenanthrene Derivatives from *Dendrobium chrysanthum*[J]. *Nat Pro Res*, 2003, 17(3):201-205.
- [8] Cai JY, Ni J, Chen TH, Zhang T. A new phenanthrene from *Dendrobium chrysanthum*[J]. *Chin Tradit Herb Drugs*, 2017, 48(08):1506-1508 (in Chinese).
- [9] Yang H, Chou GX, Wang ZT, et al. Two new fluorenones from *Dendrobium chrysotoxum*[J]. *J Asian Nat Prod Res*, 2004, 6(1):35-38.
- [10] Ekevåg U, Elander M, Gawell L, et al. Studies on orchidaceae alkaloids. 33. Two new alkaloids, N-cis- and N-trans-cinnamoyl-norcuskhygrine from *Dendrobium chrysanthum* Wall[J]. *Acta Chem Scand*, 1973, 27(6):1982-1986.
- [11] Ye QH, Zhao WM, Qin GW. Lignans from Dendrobium chrysanthum[J]. J Asian Nat Prod Res, 2004, 6(1):39-43.
- [12] Ni J, Cai JY, Huang CJ, et al. Study on hypoglycemic

activity and chemical constituents from *Dendrobium chrysanthum* Lindl[J]. *J Guangdong Pharm Univ*, 2015, 31(1):10-13.

- [13] Huang CJ, Cai JY, Ni J, et al. Study on chemical constituents from *Dendrobium chrysanthum* Wall. ex Lindl.[J]. *J Guangdong Pharm Univ*, 2016, 32(3): 279-281.
- [14] Cai JY, Yang C, Chen TH et al. Detection of new phenylpropanoids from *Dendrobium chrysanthum*[J]. *Nat Pro Res*, 2018, 32(13): 1600-1604.
- [15] Shen Y, Chen HS, Wang Q. Studies on chemical constituents of Asparagus cochinchinensis(II)[J]. Acad J Second Mil Med Univ, 2007, 28 (11): 1241-1244.
- [16] Yang C, Lin WL, Zhao L, et al. A new furostanol saponin from *Dendrobium chrysanthum* Lindl. with cytotoxic activity[J]. *Nat Prod Res*, 2018, 33(17): 2461-2465.
- [17] Ito M, Matsuzaki K, Wang J, et al. New phenanthrenes and stilbenes from *Dendrobium loddigesii*[J]. *Chem Pharm Bull(Tokyo)*, 2010, 58(5):628-633.
- [18] Li JY, Yan HJ, Yang JH, et al. Analysis of Volatile Components from Rosa odorata Complex by SPME-GC/MS[J]. Southwest Agric Sci, 2018, 31:587-591.
- [19] Li Y, Lin HQ, Zhang CF, et al. A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities[J]. *Bioorg Med Chem*, 2006, 14(10):3496-3501.
- [20] Lin YH, Fang JG, Gong XP, et al. Anti-endotoxic effects of syringic acid in Radix Isatidis[J]. Chin Tradit Herb Drugs, 2003, 34(10):926-928.
- [21] Yang XJ, Huang WX, Wang NL, et al. Effect of phenolic acids isolated from *Sambucus williamsii* on proliferation and differentiation of rat osteoblastic UMR106 cells[J]. *Chin Tradit Herb Drugs*, 2005, 36 (11):1604-1607.
- [22] Huang JM, Zheng QY, Liang HZ. Determination of the contents of vanilla acid, ferulic acid and cinnamic acid in Huhuanglian[J]. J Chin Med Mater, 2002, 12(25):881-882.
- [23] Lu GS, Tan X, Chen JY, et al. Liposoluble

Components from *Desmodium caudatum* (Thunb.) DC[J]. *Guangxi Sci*, 2012, 19 (4):355-357.

- [24] He LY, Luo SR. Study on analytical methods of anthraquinone derivatives in Chinese herbal medicine I. Separation and content determination of plant components of the genus rhubarb in China[J]. Acta Pharm Sin, 1980, (9):559-562.
- [25] Zhang GN, Zhang CF, Luo Y, et al. Chemical Constituents of *Dendrobium thyrsiflorum* Rchb. f (II) [J]. *Chin J Nat Med*, 2005, 3(5):287-290.
- [26] Yang L, Qin LH, Bligh SW Annie et al. A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities[J]. *Bioorg Med Chem*, 2006, 14(10):3496-3501.
- [27] Lin WL. Studies on the Chemical Constituents and activities of *Dendrobium chrysanthum* Lindl[D]. Guangzhou: Guangdong Pharmaceutical University, 2019.
- [28] Yang C. Studies on the Chemical Constituents and hypoglycemic activity of *Dendrobium chrysanthum* Lindl. Guangzhou: Guangdong Pharmaceutical University, 2018.
- [29] Yang C, Lin WL, Cai JY. Effect of Dendrobium chrysanthum Lindl. total extract on the blood glucose and blood lipids in diabetic rats[J]. J Guangdong Pharm Univ, 2018, 34(3):325-329.
- [30] Chen TH. Study on hypoglycemic activity and chemical constituents of *Zingiber striolatum* Diels and *Dendrobium chrysanthum* Lindl[D]. Guangzhou: Guangdong Pharmaceutical University, 2016.
- [31] Ni J. Study on hypoglycemic activity and chemical constituents from *Dendrobium chrysanthum* Lindl[D]. Guangzhou: Guangdong Pharmaceutical University, 2015.
- [32] Huang Y, Chang RJ, Jin HZ, et al. Phenolic Constituents from *Tsoongiodendron odorum* Chun[J]. *Nat Pro Res and Dev*, 2012, 24(2):176-178.
- [33] Huang H, Zhang JX, Zeng SJ, et al. Comparative analysis of the biological characteristics main components of different Dendrobii[J]. *Guangdong Agric Sci*, 2012, 39(12):44-46.